曲線的極坐標(biāo)方程為,則曲線的直角坐標(biāo)方程為________________。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,).若直線l過點P,且傾斜角為,圓C以M為圓心, 4為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(坐標(biāo)系與參數(shù)方程)設(shè)方程,(θ為參數(shù)).表示的曲線為C,
(1)求曲線C上的動點到原點O的距離的最小值(2)點P為曲線C上的動點,當(dāng)|OP|最小時(O為坐標(biāo)原點),求點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合.若曲線C1的方程為ρ2=8ρsinθ-15,曲線C2的方程為
x=2
2
cosα
y=
2
sinα
(α為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若C2上的點Q對應(yīng)的參數(shù)為α=
4
,P為C1上的動點,求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以極坐標(biāo)系中的點為圓心,1為半徑的圓的極坐標(biāo)方程是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)方程所表示的曲線的直角坐標(biāo)方程是           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

極坐標(biāo)系中,曲線上的動點與定點的最近距離是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題) 曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



查看答案和解析>>

同步練習(xí)冊答案