在“石頭、剪刀、布”的游戲中,規(guī)定:“石頭贏剪刀”、“剪刀贏布”、“布贏石頭”.現(xiàn)有甲、乙兩人玩這個(gè)游戲,共玩3局,每一局中每人等可能地獨(dú)立選擇一種手勢(shì).設(shè)甲贏乙的局?jǐn)?shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望是( )
A.
B.
C.
D.1
【答案】分析:ξ的可能取值為:0、1、2、3,每一局中甲勝的概率為,進(jìn)而可得ξ~B(3,),由二項(xiàng)分布的期望的求解可得答案.
解答:解:由題意可得隨機(jī)變量ξ的可能取值為:0、1、2、3,
每一局中甲勝的概率為=,平的概率為,輸?shù)母怕蕿?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124157967494768/SYS201310251241579674947005_DA/5.png">,
故P(ξ=0)==,P(ξ=1)==
P(ξ=2)==,P(ξ=3)==
故ξ~B(3,),故Eξ==1
故選D
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的期望的求解,得出ξ~B(3,)是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“石頭、剪刀、布”是一種廣泛流傳于我國(guó)民間的古老游戲,其規(guī)則是:用三種不同的手勢(shì)分別表示石頭、剪刀、布;兩個(gè)玩家同時(shí)出示各自手勢(shì)1次記為1次游戲,“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”;雙方出示的手勢(shì)相同時(shí),不分勝負(fù).現(xiàn)假設(shè)玩家甲、乙雙方在游戲時(shí)出示三種手勢(shì)是等可能的.
(Ⅰ)求出在1次游戲中玩家甲勝玩家乙的概率;
(Ⅱ)若玩家甲、乙雙方共進(jìn)行了3次游戲,其中玩家甲勝玩家乙的次數(shù)記作隨機(jī)變量X,求X的分布列及其期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)在“石頭、剪刀、布”的游戲中,規(guī)定:“石頭贏剪刀”、“剪刀贏布”、“布贏石頭”.現(xiàn)有甲、乙兩人玩這個(gè)游戲,共玩3局,每一局中每人等可能地獨(dú)立選擇一種手勢(shì).設(shè)甲贏乙的局?jǐn)?shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在“石頭、剪刀、布”的游戲中,規(guī)定:“石頭贏剪刀”、“剪刀贏布”、“布贏石頭”.現(xiàn)有甲、乙兩人玩這個(gè)游戲,共玩3局,每一局中每人等可能地獨(dú)立選擇一種手勢(shì).設(shè)甲贏乙的局?jǐn)?shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波二模 題型:單選題

在“石頭、剪刀、布”的游戲中,規(guī)定:“石頭贏剪刀”、“剪刀贏布”、“布贏石頭”.現(xiàn)有甲、乙兩人玩這個(gè)游戲,共玩3局,每一局中每人等可能地獨(dú)立選擇一種手勢(shì).設(shè)甲贏乙的局?jǐn)?shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望是( 。
A.
1
3
B.
4
9
C.
2
3
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案