已知函數(shù)在點處取得極小值-4,使其導數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
(1)
(2)m<2,;當m>3時,;當時,
解析試題分析:⑴根據(jù)題意,由于函數(shù)在點處取得極小值-4,使其導數(shù)的的取值范圍為,可知的兩個根為1,3,結(jié)合韋達定理可知
⑵由于,那么導數(shù)
,求,結(jié)合二次函數(shù)開口方向向下,以及對稱軸和定義域的關(guān)系分情況討論可知:
①當時,
②當m<2時,g(x)在[2,3]上單調(diào)遞減,
③當m>3時,g(x)在[2,3]上單調(diào)遞增,
考點:導數(shù)的運用
點評:主要是考查了導數(shù)的幾何意義,以及運用導數(shù)來求解函數(shù)最值的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(Ⅰ)當a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當曲線y = f(x)的切線的斜率為負數(shù)時,求在x軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象在點處的切線斜率為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當時,判斷和的大小,并說明理由;
(3)求證:當時,關(guān)于的方程:在區(qū)間上總有兩個不同的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com