已知m,n是兩條不同直線,α,β是兩個(gè)不同平面,給出四個(gè)命題:
①若α∩β=m,n?α,n⊥m,則α⊥β
②若m⊥α,m⊥β,則α∥β
③若m⊥α,n⊥β,m⊥n,則α⊥β
④若m∥α,n∥βm∥n,則α∥β
其中正確的命題是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ①④
  4. D.
    ②④
B
分析:由面面垂直的判定定理,可判斷①的真假;由面面平行的判定定理及線面垂直的幾何特征,可以判斷②的真假;由面面垂直的判定定理,及線面垂直的幾何特征,可以判斷③的真假;根據(jù)線面平行的幾何特征及面面平行的判定方法,可以判斷④的真假.
解答:①若α∩β=m,n?α,n⊥m,如圖,則α與β不一定垂直,故①為假命題;

②若m⊥α,m⊥β,根據(jù)垂直于同一條直線的兩個(gè)平面平行,則α∥β;故②為真命題;
③若m⊥α,n⊥β,m⊥n,則α⊥β,故③為真命題;
④若m∥α,n∥β,m∥n,如圖,則α與β可能相交,故④為假命題.

故選B.
點(diǎn)評:本題考查的知識點(diǎn)是平面與平面之間的位置關(guān)系,熟練掌握空間直線與平面平行及垂直的判定定理、性質(zhì)定義、幾何特征是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知m,n是兩條不同的直線,α是一個(gè)平面,有下列四個(gè)命題:
①①若m∥α,n∥α,則m∥n;②若m⊥α,n⊥α,則m∥n;
③若m∥α,n⊥α,則m⊥n;④若m⊥α,m⊥n,則n∥α.
其中真命題的序號有
②③
. (請將真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知m、n是兩條不同直線,α、β、γ是三個(gè)不同平面,以下有三種說法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,n?β,則n∥β.
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是

①若α⊥γ,α⊥β,則γ∥β      ②若m∥n,m?α,n?β,則α∥β
③若m∥n,m∥α,則n∥α      ④若n⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列命題:
①若m?α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;
③若m⊥α,m⊥n,則n∥α;④若m⊥α,m⊥β,則α∥β;
其中真命題的個(gè)數(shù)是
1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的有

①若m∥α,n∥α,則m∥n;               ②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,m∥β,則α∥β;               ④若m⊥α,n⊥α,則m∥n.

查看答案和解析>>

同步練習(xí)冊答案