. (14分) 

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為元,并且每件產(chǎn)品需向總公司交元()的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬(wàn)件.

(1)求分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)最大,并求出的最大值.

 

【答案】

 

9解:(本小題滿分14分)

(1)分公司一年的利潤(rùn)L(萬(wàn)元)與售價(jià)x的函數(shù)關(guān)系式為:

L=(x-3-a)(12-x)2,x∈[9,11].

(2)L′(x)=(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x).

令L′=0得x=6+a或x=12(不合題意,舍去).

∵3≤a≤5,∴8≤6+a≤.

在x=6+a兩側(cè)L′的值由正變負(fù).

所以①當(dāng)8≤6+a<9即3≤a<時(shí),

Lmax=L(9)=(9-3-a)(12-9)2=9(6-a).

②當(dāng)9≤6+a≤≤a≤5時(shí),

Lmax=L(6+a)=(6+a-3-a)[12-(6+a)]2

=4(3-a)3.

所以Q(a)=

答  若3≤a<,則當(dāng)每件售價(jià)為9元時(shí),分公司一年的利潤(rùn)L最大,最大值Q(a)=9(6-a)(萬(wàn)元);若≤a≤5,則當(dāng)每件售價(jià)為(6+a)元時(shí),分公司一年的利潤(rùn)L最大,最大值Q(a)=4(3-a)3(萬(wàn)元).

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省、陽(yáng)東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

某零售店近五個(gè)月的銷售額和利潤(rùn)額資料如下表:

商店名稱           A       B        C       D       E

E[源:七彩教育網(wǎng)]

銷售額 (千萬(wàn)元)    3       5        6       7        9

9

利潤(rùn)額(百萬(wàn)元)    2       3        3       4        5

(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計(jì)算利潤(rùn)額關(guān)于銷售額的回歸直線方程;

(3)當(dāng)銷售額為4(千萬(wàn)元)時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤(rùn)額(百萬(wàn)元).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省常州市教育學(xué)會(huì)高三學(xué)生學(xué)業(yè)水平監(jiān)測(cè)數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)

某公司2009年9月投資14400萬(wàn)元購(gòu)得上海世界博覽會(huì)某種紀(jì)念品的專利權(quán)及生產(chǎn)設(shè)備,生產(chǎn)周期為一年.已知生產(chǎn)每件紀(jì)念品還需要材料等其它費(fèi)用20元,為保證有一定的利潤(rùn),公司決定紀(jì)念品的銷售單價(jià)不低于150元,進(jìn)一步的市場(chǎng)調(diào)研還發(fā)現(xiàn):該紀(jì)念品的銷售單價(jià)定在150元到250元之間較為合理(含150元及250元).并且當(dāng)銷售單價(jià)定為150元時(shí),預(yù)測(cè)年銷售量為150萬(wàn)件;當(dāng)銷售單價(jià)超過(guò)150元但不超過(guò)200元時(shí),預(yù)測(cè)每件紀(jì)念品的銷售價(jià)格每增加1元,年銷售量將減少1萬(wàn)件;當(dāng)銷售單價(jià)超過(guò)200元但不超過(guò)250元時(shí),預(yù)測(cè)每件紀(jì)念品的銷售價(jià)格每增加1元,年銷售量將減少1.2萬(wàn)件.

根據(jù)市場(chǎng)調(diào)研結(jié)果,設(shè)該紀(jì)念品的銷售單價(jià)為(元),年銷售量為(萬(wàn)件),平均每件紀(jì)念品的利潤(rùn)為(元).

⑴求年銷售量為關(guān)于銷售單價(jià)的函數(shù)關(guān)系式;

⑵該公司考慮到消費(fèi)者的利益,決定銷售單價(jià)不超過(guò)200元,問(wèn)銷售單價(jià)為多少時(shí),平均每件紀(jì)念品的利潤(rùn)最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

某園林公司計(jì)劃在一塊為圓心,為常數(shù),單位為米)為半徑的半圓形(如圖)地上種植花草樹(shù)木,其中弓形區(qū)域用于觀賞樣板地,區(qū)域用于種植花木出售,其余區(qū)域用于種植草皮出售.已知觀賞樣板地的成本是每平方米2元,花木的利潤(rùn)是每平方米8元,草皮的利潤(rùn)是每平方米3元.

(1)設(shè), ,用表示弓形的面積;

(2)園林公司應(yīng)該怎樣規(guī)劃這塊土地,才能使總利潤(rùn)最大? 并求相對(duì)應(yīng)的

(參考公式:扇形面積公式表示扇形的弧長(zhǎng))

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆北京市高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本小題滿分14分)某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元.試問(wèn)銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省東莞市高二下學(xué)期期末考試(理科)數(shù)學(xué)卷 題型:解答題

(本題滿分14分)某突發(fā)事件,在不采取任何預(yù)防措施的情況下發(fā)生的概率為,一旦發(fā)生,將造成某公司300萬(wàn)元的損失.現(xiàn)有甲、乙兩種相互獨(dú)立的預(yù)防措施可供選擇,單獨(dú)采用甲、乙預(yù)防措施所需的費(fèi)用分別為40萬(wàn)元和20萬(wàn)元,采用相應(yīng)預(yù)防措施后此突發(fā)事件不發(fā)生的概率分別為.若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用、同時(shí)采用或都不采用,請(qǐng)分別計(jì)算這幾種預(yù)防方案的總費(fèi)用,并指出哪一種預(yù)防方案總費(fèi)用最少.

(注:總費(fèi)用 = 采取預(yù)防措施的費(fèi)用+發(fā)生突發(fā)事件損失的期望值)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案