無(wú)論
a
=(x1,x2,x3),
b
=(y1,y2,y3),
c
=(z1,z2,z3),是否為非零向量,下列命題中恒成立的是( 。
分析:逐個(gè)驗(yàn)證:選項(xiàng)A,當(dāng)有一個(gè)為零向量時(shí)不成立;選項(xiàng)B,當(dāng)
b
=
0
時(shí),則
a
c
不一定成立;選項(xiàng)C,當(dāng)
a
c
不共線(xiàn)時(shí),不成立;選項(xiàng)D,無(wú)論
.
a
b
共線(xiàn),還是不共線(xiàn),都成立
解答:解:選項(xiàng)A,當(dāng)有一個(gè)為零向量時(shí)不成立,故錯(cuò)誤;
選項(xiàng)B,當(dāng)
b
=
0
時(shí),則
a
c
不一定成立,錯(cuò)故誤;
選項(xiàng)C,當(dāng)
a
c
不共線(xiàn)時(shí),不成立,故錯(cuò)誤;
選項(xiàng)D,由向量模長(zhǎng)的意義和三角形的三邊關(guān)系可得,
無(wú)論
.
a
b
共線(xiàn),還是不共線(xiàn),都成立,故正確.
故選D
點(diǎn)評(píng):本題考查空間向量的共線(xiàn)與三角不等式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:x2=4y的焦點(diǎn)為F,直線(xiàn)l過(guò)點(diǎn)F交拋物線(xiàn)C于A、B兩點(diǎn).
(Ⅰ)設(shè)A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范圍;
(Ⅱ)是否存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng)都有∠AQF=∠BQF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(abc≠0).
(1)證明:只要a<0,無(wú)論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(2)在同一函數(shù)圖象上任意取不同兩點(diǎn)A(x1,y1),B(x2,y2),線(xiàn)段AB中點(diǎn)為C(x0,y0),記直線(xiàn)AB的斜率為k,
①對(duì)于二次函數(shù)f(x)=ax2+bx+c,求證:k=f′(x0);
②對(duì)于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有①同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) f(x)=
1
2
x2-2alnx+(a-2)x,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值.
(Ⅱ)當(dāng)a=-1時(shí),求證:無(wú)論c 取何值,直線(xiàn)y=-6
2
x+c均不可能與函數(shù)f(x)相切;
(Ⅲ)是否存在實(shí)數(shù)a對(duì)任意的x1,x2∈(0,+∞)且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,若存在求出a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•臺(tái)州一模)已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)證明:只要a<0,無(wú)論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在二次函數(shù)f(x)=ax2+bx+c圖象上任意取不同兩點(diǎn)A(x1,y1),B(x2,y2),線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為x0,記直線(xiàn)AB的斜率為k,(i)求證:k=f′(x0);(ii)對(duì)于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有(i)同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案