【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個(gè),標(biāo)號為1的小球1個(gè),標(biāo)號為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號為2的小球的概率是.
(1)求的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.記“”為事件,求事件的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),依據(jù)圖像可知,線段總是位于兩點(diǎn)之間函數(shù)圖像的上方,因此有結(jié)論成立,運(yùn)用類比的思想方法可知,若點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),則類似地有_________成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,梯形中,∥,,, ,將沿對角線折起.設(shè)折起后點(diǎn)的位置為,并且平面 平面.給出下面四個(gè)命題:
①;②三棱錐的體積為;③ 平面;
④平面平面.其中正確命題的序號是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面,若存在,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次人才招聘會上,有一家公司的招聘員告訴你,“我們公司的收入水平很高”“去年,在50名員工中,最高年收入達(dá)到了200萬,員工年收人的平均數(shù)是10萬",而你的預(yù)期是獲得9萬元年薪.
(1)你是否能夠判斷年薪為9萬元的員工在這家公司算高收入者?
(2)如果招聘員繼續(xù)告訴你,“員工年收入的變化范圍是從3萬到200萬”,這個(gè)信息是否足以使你作出自己是否受聘的決定?為什么?
(3)如果招聘員繼續(xù)給你提供了如下信息,員工收人的第一四分位數(shù)為4.5萬,第三四分位數(shù)為9.5萬,你又該如何使用這條信息來作出是否受聘的決定?
(4)根據(jù)(3)中招聘員提供的信息,你能估計(jì)出這家公司員工收入的中位數(shù)是多少嗎?為什么平均數(shù)比估計(jì)出的中位數(shù)高很多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 為棱PC上一點(diǎn).
(Ⅰ)若點(diǎn)是PC的中點(diǎn),證明:B∥平面PAD;
(Ⅱ) 試確定的值使得二面角-BD-P為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,//,,為正三角形. 若,且與底面所成角的正切值為.
(1)證明:平面平面;
(2)是線段上一點(diǎn),記(),是否存在實(shí)數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院批準(zhǔn)從2009年起,將每年8月8日設(shè)置為“全民健身日”,為響應(yīng)國家號召,各地利用已有土地資源建設(shè)健身場所.如圖,有一個(gè)長方形地塊,邊為,為.地塊的一角是草坪(圖中陰影部分),其邊緣線是以直線為對稱軸,以為頂點(diǎn)的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線上一點(diǎn)的直線型隔離帶,,分別在邊,上(隔離帶不能穿越草坪,且占地面積忽略不計(jì)),將隔離出的△作為健身場所.則△的面積為的最大值為____________(單位:).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com