如圖,在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,H為直線B1D與平面ACD1的交點,求證:D1、H、0三點共線.
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:將三點共線轉(zhuǎn)化為證兩面的交線問題,利用兩面相交,有且只有一條交線,即兩面的公共點都共線證明.
解答: 證明:∵正方形ABCD的中心O是對角線AC、BD的交點,
∴D1O是平面ACD1與平面BB1D1D的交線,
又∵B1D在平面BB1D1D中,B1D與平面ACD1相交,
∴交點H在交線D1O上,
即D1、H、O.
點評:本題考查空間中的三點共線問題,轉(zhuǎn)化求解,利用轉(zhuǎn)化的思想求解,是數(shù)學(xué)中一類重要方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為△ABC的三個內(nèi)角,且∠A<∠B<∠C,sinB=
4
5
,cos(2A+C)=-
4
5
,求cos2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程kx+3-2k=
4-x2
有兩個不同的解,則實數(shù)k的取值范圍是( 。
A、(
5
12
,
3
4
)
B、(
5
12
,1]
C、(
5
12
,
3
4
]
D、(0,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用a,b表示兩條不同的直線,γ表示平面,給出下列命題:
(1)若a∥γ,b∥γ,則a∥b
(2)若a∥b,b∥γ,則a∥γ
(3)若a⊥γ,b∥γ,則a⊥b
(4)若a⊥γ,b⊥γ,則a∥b
其中真命題的序號是( 。
A、(1)(4)
B、(2)(3)
C、(3)(4)
D、(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S7=70,且a1,a2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a5=5,S7=28.
(1)求數(shù)列的通項{an};      
(2)求數(shù)列{
1
Sn
}
的前n項和Tn;
(3)若數(shù)列{bn}滿足b1=1,bn+1=bn+qan(q>0,n∈N*),求數(shù)列{bn}的通項公式,并比較bn•bn+2與bn+12的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2012年南非德班國際氣候大會上,與會的各國代表共提了P(P∈N+)條議案,已知有些國家提出了相同的議案,且任何兩個國家都至少有一個議案相同,但沒有兩個國家提出全部相同的建議,則參與會議的國家不多于多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-bx+a+2是定義在[a,b]上的奇函數(shù),則b-a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺的上、下底面半徑分別是10cm、20cm,它的側(cè)面展開圖--扇環(huán)的圓心角為180°,那么圓臺的表面積是多少?(結(jié)果中保留π)

查看答案和解析>>

同步練習(xí)冊答案