(理科)已知三棱錐O-ABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,點(diǎn)M在OA上,且OM=2MA,N為BC中點(diǎn),則
MN
=
1
2
(
c
-
a
-
b
)
1
2
(
c
-
a
-
b
)
(結(jié)果用
a
,
b
,
c
表示)
分析:用減法把向量先變化成已知向量的差的形式,再利用向量的加法法則,得到結(jié)果.
解答:解:由題意知
MN
=
ON
-
OM
=
1
2
OC
-
1
2
OA
+
OB

OA
=
a
OB
=
b
,
OC
=
c
,∴
MN
=
1
2
(
c
-
a
-
b
)

故答案為:
1
2
(
c
-
a
-
b
)
點(diǎn)評(píng):本題考查空間向量的加減法,本題解題的關(guān)鍵是在已知圖形中盡量的應(yīng)用幾何體的已知棱表示要求的結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理科)已知三棱錐O-ABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,點(diǎn)M在OA上,且OM=2MA,N為BC中點(diǎn),則
MN
=______(結(jié)果用
a
,
b
,
c
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知正方體ABCDA'B'C'D'的棱長(zhǎng)為1,點(diǎn)M是棱AA'的中點(diǎn),點(diǎn)O是對(duì)角線BD'的中點(diǎn).

(Ⅰ)求證:OM為異面直線AA'和BD'的公垂線;

(Ⅱ)求二面角MBC'-B'的大。

(Ⅲ)求三棱錐MOBC的體積(理科做,文科不做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

(理科)已知三棱錐O-ABC中,=,=,=,點(diǎn)M在OA上,且OM=2MA,N為BC中點(diǎn),則=    (結(jié)果用,表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

(理科)已知三棱錐O-ABC中,==,=,點(diǎn)M在OA上,且OM=2MA,N為BC中點(diǎn),則=    (結(jié)果用,表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案