如圖所示,已知在△ABC中,∠C=90°,正方形DEFC內(nèi)接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,則AF:FC=
1:2
1:2
分析:根據(jù)平行線分線段成比例定理的推論,我們易判斷出△AFE∽△ACB,根據(jù)三角形相似的性質(zhì),AF:FE=AC:CB=1:2,進(jìn)而根據(jù)四邊形DEFC為正方形,即FE=FC,即可得到結(jié)論.
解答:解:∵EF∥BC
∴△AFE∽△ACB
∴AF:FE=AC:CB
又∵AC=1,BC=2,四邊形DEFC為正方形,即FE=FC
∴AF:FC=AC:CB=1:2
故答案為:1:2
點(diǎn)評(píng):本題考查的知識(shí)是平行線分線段成比例定理的推論,其中根據(jù)平行線分線段成比例定理的推論,得到△AFE∽△ACB,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示精英家教網(wǎng),已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)問當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(II)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥OD時(shí),求二面角Q-PD-A的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知在矩形ABCD中,
AD
=4
3
,設(shè)
AB
=a,
BC
=b,
BD
=c
,試求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在[-1,7]上的函數(shù)y=f(x)的圖象如圖所示.已知(a,b)是y=
2012
f(x)
+2012
的一個(gè)單調(diào)遞增區(qū)間,則b-a的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知在圓錐SO中,底面半徑r=1,母線長(zhǎng)l=4,M為母線SA上的一個(gè)點(diǎn),且SMx,從點(diǎn)M拉一根繩子,圍繞圓錐側(cè)面轉(zhuǎn)到點(diǎn)A,求:

(1)設(shè)f(x)為繩子最短長(zhǎng)度的平方,求f(x)表達(dá)式;

(2)繩子最短時(shí),頂點(diǎn)到繩子的最短距離;

(3)f(x)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆吉林省高二4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);

(2)問當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?

(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案