在△ABC中,若asinA+bsinB<csinC,則△ABC的形狀是________.

鈍角三角形
分析:利用正弦定理和余弦定理即可得出.
解答:由正弦定理可得>0,∴,,
∵asinA+bsinB<csinC,∴,即a2+b2<c2
<0.
∵0<C<π,∴
∴角C設鈍角.
∴△ABC的形狀是鈍角三角形.
故答案為鈍角三角形
點評:熟練掌握正弦定理和余弦定理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點,已知
AM
=
c
、
AN
=
d
,試用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
,
AC
=
b
若P,Q,S為線段BC的四等分點,試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,側面SAC與底面ABC垂直,E,O分別是SC、AC的中點,SA=SC=
2
,BC=
1
2
AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年北京市海淀區(qū)八一中學高三(上)周練數(shù)學試卷(11)(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側面SAC與底面ABC垂直,E,O分別是SC、AC的中點,SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年北京市東城區(qū)示范校高三(上)12月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側面SAC與底面ABC垂直,E,O分別是SC、AC的中點,SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

同步練習冊答案