古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n(n∈N*)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和(i,j∈N*);(其中表示所有的積bibj(1≤i≤j≤n)的和)
證明:++…+(n∈N*).

【答案】分析:(1)由題意要將n個(gè)圓盤全部轉(zhuǎn)移到C柱上,只需先將上面n-1個(gè)圓盤轉(zhuǎn)移到B柱上,需要an-1次轉(zhuǎn)移,然后將最大的那個(gè)圓盤轉(zhuǎn)移到C柱上,需要一次轉(zhuǎn)移,再將B柱上的n-1個(gè)圓盤轉(zhuǎn)移到C柱上,需要an-1次轉(zhuǎn)移,所以有an=2an-1+1,利用構(gòu)造法可求an;
(2)先求得和=,再令,則當(dāng)n≥2時(shí),從而利用放縮法可證.
解答:解:(1)a1=1,a2=3,a3=7
事實(shí)上,要將n個(gè)圓盤全部轉(zhuǎn)移到C柱上,只需先將上面n-1個(gè)圓盤轉(zhuǎn)移到B柱上,需要an-1次轉(zhuǎn)移,然后將最大的那個(gè)圓盤轉(zhuǎn)移到C柱上,需要一次轉(zhuǎn)移,再將B柱上的n-1個(gè)圓盤轉(zhuǎn)移到C柱上,需要an-1次轉(zhuǎn)移,所以有an=2an-1+1則an+1=2(an-1+1)⇒an+1=2n,所以an=2n-1
(2)bn=an+1=2n
,則當(dāng)n≥2時(shí)=


,所以對(duì)一切n∈N*有:
另方面cn>0恒成立,所以對(duì)一切n∈N*有
綜上所述有:
點(diǎn)評(píng):本題的(1)問關(guān)鍵是從特殊中發(fā)現(xiàn)一般性的規(guī)律,考查構(gòu)造法求數(shù)列的通項(xiàng);(2)問體現(xiàn)等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,同時(shí)應(yīng)注意放縮法的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n(n∈N*)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和Sn=
1≤i≤j≤n
bibj
(i,j∈N*);(其中
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
證明:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3S2n-1
S2S4S2n
4
21
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n(n∈N*)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A,B,C可供使用.

現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
(3)證明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有個(gè)圓盤依其半徑大小,大的在下,小的在上套在柱上,現(xiàn)要將套在柱上的盤換到柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子可供使用.

現(xiàn)用表示將個(gè)圓盤全部從柱上移到柱上所至少需要移動(dòng)的次數(shù),回答下列問題:

(1)寫出 并求出

(2)記 求和(其中表示所有的積的和)

(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市西南師大附中高三下學(xué)期五月月考數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)   寫出a1a2,a3,并求出an
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三5月月考考試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分12分)

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有個(gè)圓盤依其半徑大小,大的在下,小的在上套在A桿上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現(xiàn)用表示將n個(gè)圓盤全部從A柱上移到C上所至少需要移動(dòng)的次數(shù),回答下列問題:

   (1)寫出,并求出

   (2)記,求和;

       (其中表示所有的積的和)

   (3)證明:

 

查看答案和解析>>

同步練習(xí)冊答案