若不等式t2-log2xt<0對任意t∈(0,數(shù)學(xué)公式]恒成立,則實(shí)數(shù)x的取值范圍是


  1. A.
    數(shù)學(xué)公式數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式數(shù)學(xué)公式
A
分析:通過構(gòu)造函數(shù),利用函數(shù)的圖象推出x 的不等式求解即可.
解答:解:令y=t2,y=log2xt,不等式t2-log2xt<0對任意t∈(0,]恒成立,
即不等式t2<log2xt對任意t∈(0,]恒成立,
就是t∈(0,]時,函數(shù)的圖象y=t2在y=log2xt的下方,如圖:
可得
解得,
故選A.
點(diǎn)評:本題考查函數(shù)與方程的綜合應(yīng)用,函數(shù)的圖象以及函數(shù)的恒成立,不等式的解法,考查轉(zhuǎn)化思想與計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2+ax-1,g(log2x)=x2-
x2a-2

(1)求函數(shù)g(x)的解析式,并寫出當(dāng)a=1時,不等式g(x)<8的解集;
(2)若f(x)、g(x)同時滿足下列兩個條件:①?t∈[1,4]使f(-t2-3)=f(4t) ②?x∈(-∞,a],g(x)<8.
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的奇函數(shù)f(x)滿足f(log2x)=
-x+ax+1

(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x2+ax-1,g(log2x)=x2-數(shù)學(xué)公式
(1)求函數(shù)g(x)的解析式,并寫出當(dāng)a=1時,不等式g(x)<8的解集;
(2)若f(x)、g(x)同時滿足下列兩個條件:①?t∈[1,4]使f(-t2-3)=f(4t) ②?x∈(-∞,a],g(x)<8.
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域?yàn)镽的奇函數(shù)f(x)滿足f(log2x)=
-x+a
x+1

(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市通州區(qū)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=2x2+ax-1,g(log2x)=x2-
(1)求函數(shù)g(x)的解析式,并寫出當(dāng)a=1時,不等式g(x)<8的解集;
(2)若f(x)、g(x)同時滿足下列兩個條件:①?t∈[1,4]使f(-t2-3)=f(4t) ②?x∈(-∞,a],g(x)<8.
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案