(1)求以A(-1,2),B(5,-6)為直徑兩端點的圓的方程.
(2)求過點A(1,2)和B(1,10)且與直線x-2y-1=0相切的圓的方程.
【答案】分析:(1)利用中點坐標公式求出AB的中點C的坐標,即為所求圓的圓心坐標.再利用兩點間的距離公式求出半徑AC之長,即可得到所求圓標準方程.
(2)算出線段AB的垂直平分線y=6,結合題意設圓心(a,6),半徑為r,可得圓的標準方程關于a、r的式子,再結合點到直線的距離公式,列出關于a、r的方程組,解之即可得到所求圓的標準方程.
解答:解:(1)設圓心為C(a,b),由A(-1,2)、B(5,-6),(2分)
結合中點坐標公式,得a==2,b==-2,可得C(2,-2)
∵|AC|==5
∴圓的半徑r=|AC|=5,(5分)
因此,以線段AB為直徑的圓的方程是(x-2)2+(y+2)2=25.(7分)
(2)由題意,可得圓心在線段AB的垂直平分線y=6上,
因此設圓心為(a,6),半徑為r,
可得圓的標準方程為(x-a)2+(y-6)2=r2
代入B點坐標,得(1-a)2+(10-6)2=r2,
∵直線x-2y-1=0與圓相切,∴
,(9分)
解之得,或 (12分)
∴圓的方程是∴(x-3)2+(y-6)2=20或 (x+7)2+(y-6)2=80(14分)
點評:本題給出經過兩個定點并且與已知直線相切的圓,求它的標準方程,著重考查了圓的一般方程與標準方程、直線與圓的位置關系等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點O為原點建立如圖所示的平面直角坐標系xoy.
(1)求以A,B為焦點,且過C,D兩點的橢圓的標準方程;
(2)過點P(0,2)的直線l與(1)中的橢圓交于M,N兩點,是否存在直線l,使得以線段MN為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•蚌埠二模)已知△ABC中,點A、B的坐標分別為(-
2
,0),B(
2
,0)
,點C在x軸上方.
(1)若點C坐標為(
2
,1)
,求以A、B為焦點且經過點C的橢圓的方程;
(2)過點P(m,0)作傾角為
3
4
π
的直線l交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方形ABCD,AB=2
2
,BC=1,以AB的中點O為原點建立如圖所示的平面直角坐標系.
(1)求以A、B為焦點,且過C、D兩點的橢圓的標準方程:
(2)過點p(0,2)的直線m與(1)中橢圓只有一個公共點,求直線m的方程:
(3)過點p(0,2)的直線l交(1)中橢圓與M,N兩點,是否存在直線l,使得以弦MN為直徑的圓恰好過原點?若存在,直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求以A(-1,2),B(5,-6)為直徑兩端點的圓的方程.
(2)求過點A(1,2)和B(1,10)且與直線x-2y-1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省廣州市東風中學高三數(shù)學綜合訓練試卷6(理科)(解析版) 題型:解答題

已知矩形ABCD中,,BC=1.以AB的中點O為原點建立如圖所示的平面直角坐標系xoy.
(1)求以A,B為焦點,且過C,D兩點的橢圓的標準方程;
(2)過點P(0,2)的直線l與(1)中的橢圓交于M,N兩點,是否存在直線l,使得以線段MN為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案