設(shè)圓C與兩圓(x+)2+y2=4,(x-)2+y2=4中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點M(,),F(xiàn)(,0),且P為L上動點,求||MP|-|FP||的最大值及此時點P的坐標.

(1)-y2=1
(2)(,-)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)橢圓的焦點在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設(shè)分別是橢圓的左、右焦點,為橢圓上的第一象限內(nèi)的點,直線軸與點,并且,證明:當變化時,點在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)M、N為拋物線C:y=x2上的兩個動點,過M、N分別作拋物線C的切線l1、l2,與x軸分別交于A、B兩點,且l1與l2相交于點P,若|AB|=1.

(1)求點P的軌跡方程;
(2)求證:△MNP的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知直線l與拋物線相切于點P(2,1),且與軸交于點A,定點B的坐標為(2,0) .

(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O(shè)為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;
(2)設(shè)點C是C2上一點,若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知過拋物線的焦點的直線交拋物線于,兩點.求證:
(1)為定值;
(2) 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別為,,右頂點為A,上頂點為B.已知=.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點,經(jīng)過點的直線與該圓相切與點M,=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

同步練習冊答案