在平面直角坐標(biāo)系xOy中,橢圓G的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(-1,0),P為橢圓G的上頂點(diǎn),且∠PF1O=45°.
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l1:y=kx+m1與橢圓G交于A,B兩點(diǎn),直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點(diǎn),且|AB|=|CD|,如圖所示.(ⅰ)證明:m1+m2=0;(ⅱ)求四邊形ABCD的面積S的最大值.
【答案】分析:(Ⅰ)根據(jù)F1(-1,0),∠PF1O=45°,可得b=c=1,從而a2=b2+c2=2,故可得橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
(ⅰ)直線l1:y=kx+m1與橢圓G聯(lián)立,利用韋達(dá)定理,可求AB,CD的長(zhǎng),利用|AB|=|CD|,可得結(jié)論;
(ⅱ)求出兩平行線AB,CD間的距離為d,則 ,表示出四邊形ABCD的面積S,利用基本不等式,即可求得四邊形ABCD的面積S取得最大值.
解答:(Ⅰ)解:設(shè)橢圓G的標(biāo)準(zhǔn)方程為
因?yàn)镕1(-1,0),∠PF1O=45°,所以b=c=1.
所以,a2=b2+c2=2.…(2分)
所以,橢圓G的標(biāo)準(zhǔn)方程為.…(3分)
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
(。┳C明:由消去y得:
…(5分)
所以 ===
同理 .…(7分)
因?yàn)閨AB|=|CD|,
所以 
因?yàn)?nbsp;m1≠m2,所以m1+m2=0.…(9分)
(ⅱ)解:由題意得四邊形ABCD是平行四邊形,設(shè)兩平行線AB,CD間的距離為d,則 .因?yàn)?nbsp;m1+m2=0,所以 .…(10分)
所以 =
(或
所以 當(dāng)時(shí),四邊形ABCD的面積S取得最大值為.…(12分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,考查三角形的面積,同時(shí)考查利用基本不等式求最值,正確求弦長(zhǎng),表示出四邊形的面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案