【題目】設數(shù)列的前項和為 , ().

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

【答案】(1);(2).

【解析】試題分析:(1) 由可得 ,兩式相減得, ,即 (, ),從而可得數(shù)列為等比數(shù)列,進而可得數(shù)列的通項公式;(2)由(1)得, , ,利用裂項相消法求解即可.

試題解析:(1) ,

①,可得 ②.

①-②得, ,即 (, ).

.

時, ,所以.

(1)由(1)得, ,

所以.

所以.

【方法點晴】本題主要考查等比數(shù)列的定義與通項公式,以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設命題 ,函數(shù)有意義;命題 ,不等式恒成立,如果命題“”為真命題,命題“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1g(1﹣x)的值域為(﹣∞,0),則函數(shù)f(x)的定義域為(
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設公差不為零的等差數(shù)列{an}的前5項的和為55,且a2 , ﹣9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)設數(shù)列bn= ,求證:數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次一共調(diào)查了多少名學生.(2)在圖(1)中將對應的部分補充完整.

(3)若該校有3 000名學生,你估計全校有多少名學生平均每天參加體育活動的時間在0.5時以下?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品一年內(nèi)出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨購買AB商品分別付款168元和423元,假設他一次性購買A,B兩件商品,則應付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

同步練習冊答案