精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2sin(
π
2
x
+
π
5
),若對任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為(  )
A、4
B、2
C、1
D、
1
2
分析:由已知可知f(x1)是f(x)中最小值,f(x2)是值域中的最大值,它們分別在最高和最低點取得,它們的橫坐標最少相差半個周期,由三角函數式知周期的值,結果是周期的值的一半.
解答:解:∵對任意x∈R都有f(x1)≤f(x)≤f(x2),
∴f(x1)是最小值,f(x2)是最大值;
∴|x1-x2|的最小值為函數的半個周期,
∵T=4,
∴|x1-x2|的最小值為2,
故選B
點評:本題是對函數圖象的考查,我們只有熟悉三角函數的圖象,才能解決好這類問題,同時,其他的性質也要借助三角函數的圖象解決,本章是數形結合的典型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題滿分13分)已知函數f (x)=2n在[0,+上最小值是an∈N*).

(1)求數列{a}的通項公式;(2)已知數列{b}中,對任意n∈N*都有ba =1成立,設S為數列{b}的前n項和,證明:2S<1;(3)在點列A(2n,a)中是否存在兩點A,A(i,j∈N*),使直線AA的斜率為1?若存在,求出所有的數對(i,j);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案