已知函數(shù)處取得極值.

(1)求實數(shù)的值;

(2)若關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

(3)若,使成立,求實數(shù)的取值范圍

 

【答案】

 , (2) (3)

【解析】

試題分析:⑴先求再解方程 .(2) 由構(gòu)造函數(shù)然后求 ,再解方程,確定的單調(diào)區(qū)間,然后確定 的取值范圍. (3)由,使成立 ,利用導(dǎo)數(shù)求 的最小值,利用二次函數(shù)求的最小值,解不等式求 的范圍.

試題解析: 由題意得            4分

(2)由⑴得

設(shè)

單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

     7分

方程上恰有兩個不等的實數(shù)根,則,      9分

(3)依條件,

上為減函數(shù),在上為增函數(shù)

                                              12分

 而的最小值為    

      ∴的取值范圍為                     14分

考點:求導(dǎo)數(shù),應(yīng)用導(dǎo)數(shù)求單調(diào)區(qū)間最值,構(gòu)造函數(shù)法,解不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆度江西南昌二中高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)已知函數(shù)處取得極值.

(1) 求;

(2 )設(shè)函數(shù),如果在開區(qū)間上存在極小值,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省畢節(jié)市高三上學(xué)期第三次月考理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù)=處取得極值.

(1)求實數(shù)的值;

(2) 若關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省高三第一次月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分) 已知函數(shù)處取得極值。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求證:對于區(qū)間上任意兩個自變量的值,都有

(Ⅲ)若過點可作曲線的三條切線,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)為實數(shù)。

(Ⅰ)已知函數(shù)處取得極值,求的值;

(Ⅱ)已知不等式對任意都成立,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省高三第二階段考試數(shù)學(xué)理卷 題型:解答題

(12分)已知函數(shù)處取得極值.

(Ⅰ)求實數(shù)的值;[來源:學(xué)+科+網(wǎng)]

(Ⅱ)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案