已知sin2α=
3
4
,π<α<
2
,則sinα+cosα的值為
-
7
2
-
7
2
分析:由α的范圍,得到sinα<0,cosα<0,可得出sinα+cosα<0,將所求式子平方,利用完全平方公式展開,再利用同角三角函數(shù)間的基本關(guān)系及二倍角的正弦函數(shù)公式化簡,將sin2α的值代入,開方即可求出所求式子的值.
解答:解:∵π<α<
2
,∴sinα<0,cosα<0,
∴sinα+cosα<0,
又sin2α=
3
4
,
∴(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+sin2α=
7
4
,
則sinα+cosα=-
7
2

故答案為:-
7
2
點評:此題考查了二倍角的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx+cos(x+
π
2
),x∈R,
(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的單調(diào)增區(qū)間;(Ⅲ)若f(a)=
3
4
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2α=
3
4
,π<α<
2
,則sinα+cosα的值為(  )
A、
7
2
B、-
1
2
C、-
7
2
D、±
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知π<α+β<
2
,-
π
4
<α-β<0,sin(α+β)=-
3
5
,cos(α-β)=
12
13
,求sin2α 的值.
(2)已知tanα=-
3
4
,求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
3
4
,sinβ=
2
3
,α是第三象限角,β∈(
π
2
,π)

(Ⅰ)求sin2α的值;
(Ⅱ)求cos(2α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案