【題目】已知集合.由集合P中所有的點(diǎn)組成的圖形如圖中陰影部分所示,中間白色部分形如美麗的“水滴”.給出下列結(jié)論:
①“水滴”圖形與y軸相交,最高點(diǎn)記為A,則點(diǎn)A的坐標(biāo)為;
②在集合P中任取一點(diǎn)M,則M到原點(diǎn)的距離的最大值為3;
③陰影部分與y軸相交,最高點(diǎn)和最低點(diǎn)分別記為C,D,則;
④白色“水滴”圖形的面積是.
其中正確的有______.
【答案】②③④
【解析】
①方程中,令求得y的取值范圍,得出最高點(diǎn)的坐標(biāo);
②利用參數(shù)法求出點(diǎn)M到原點(diǎn)的距離d,求出最大值;
③求出知最高點(diǎn)C與最低點(diǎn)D的距離;
④計(jì)算“水滴”圖形的面積是由一個(gè)等腰三角形,兩個(gè)全等的弓形和一個(gè)半圓組成.
對(duì)于①中,方程中,
令,得,
所以,其中,所以,所以,
解得;
所以點(diǎn),點(diǎn),點(diǎn),點(diǎn),所以①錯(cuò)誤;
對(duì)于②中,由,設(shè),
則點(diǎn)M到原點(diǎn)的距離為
,
當(dāng)時(shí),,d取得最大值為3,所以②正確;
對(duì)于③中,由①知最高點(diǎn)為,最低點(diǎn)為,
所以,③正確;
對(duì)于④中,“水滴”圖形是由一個(gè)等腰三角形,兩個(gè)全等的弓形,和一個(gè)半圓組成;
計(jì)算它的面積是,
所以④正確;
綜上知,正確的命題序號(hào)是②③④.
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐中,,點(diǎn)在上,且,面面.
(1)證明:;
(2)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)( )
命題①:對(duì)任意的是函數(shù)的零點(diǎn);
命題②:對(duì)任意的是函數(shù)的極值點(diǎn).
A.命題①和②都成立B.命題①和②都不成立
C.命題①成立,命題②不成立D.命題①不成立,命題②成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,方程C:表示的曲線被稱作“四葉玫瑰線”(如圖)
(1)求以極點(diǎn)為圓心的單位圓與四葉玫瑰線交點(diǎn)的極坐標(biāo)和直角坐標(biāo);
(2)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合.求直線l:上的點(diǎn)M與四葉攻瑰線上的點(diǎn)N的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,點(diǎn)是它的兩個(gè)頂點(diǎn),過原點(diǎn)且斜率為的直線與線段相交于點(diǎn),且與橢圓相交于兩點(diǎn).
(1)若,求的值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年,某省將實(shí)施新高考,年秋季入學(xué)的高一學(xué)生是新高考首批考生,新高考不再分文理科,采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各分,另外,考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門科目中自選門參加考試(選),每科目滿分分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的n名學(xué)生中含女生人,求n的值及抽取到的男生人數(shù);
(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下面表格是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
選擇“物理” | 選擇“歷史” | 總計(jì) | |
男生 | 10 | ||
女生 | 30 | ||
總計(jì) |
(3)在抽取到的名女生中,在(2)的條件下,按選擇的科目進(jìn)行分層抽樣,抽出名女生,了解女生對(duì)“歷史”的選課意向情況,在這名女生中再抽取人,求這人中選擇“歷史”的人數(shù)為人的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為1,E,F分別是,的中點(diǎn),交EF于點(diǎn)D,現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使,,三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體中必有( )
A.平面EFG
B.設(shè)線段SF的中點(diǎn)為H,則平面SGE
C.四面體的體積為
D.四面體的外接球的表面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com