函數(shù)在區(qū)間(-2,+¥ )上為增函數(shù),求實數(shù)a的取值范圍.

答案:略
解析:

∵函數(shù)(2,+¥ )上為增函數(shù),∴令.有,即

2a10,即


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c,x<1
-x2+ax+3
,&x≥1
的圖象經過原點,且在x=-1處的切線斜率為-5.
(Ⅰ)求b,c的值;
(Ⅱ)求函數(shù)在區(qū)間[-1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
|x-1|,x>2
2,-2≤x≤2
x
x-1
,x<-2
,
(1)求 f[f(-3)]
(2)試判斷函數(shù)在區(qū)間(-∞,-2)上的單調性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(附加題)已知函數(shù)f(x)=x2-2kx+k+1.
(Ⅰ)若函數(shù)在區(qū)間[1,2]上有最小值-5,求k的值.
(Ⅱ)若同時滿足下列條件①函數(shù)f(x)在區(qū)間D上單調;②存在區(qū)間[a,b]⊆D使得f(x)在[a,b]上的值域也為[a,b];則稱f(x)為區(qū)間D上的閉函數(shù),試判斷函數(shù)f(x)=x2-2kx+k+1是否為區(qū)間[k,+∞)上的閉函數(shù)?若是求出實數(shù)k的取值范圍,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-sinx+1
(1)用五點法畫出函數(shù)在區(qū)間[0,2π]上的簡圖;
(2)求f(x)在[0,2π]上的單調區(qū)間.
(3)解不等式f(x)<
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2(
π
4
-x)+2
3
sin2x-a(a∈R,a為常數(shù))

(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調遞增區(qū)間;
(III)若函數(shù)在區(qū)間[
π
4
,
π
2
]
上的最小值為
3
,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案