9.設(shè)集合A={x∈Z|(x+1)(x-4)=0},B={x|x≤a},若A∩B=A,則a的值可以是( 。
A.1B.2C.3D.4

分析 由(x+1)(x-4)=0,解得A={-1,4},又B={x|x≤a},A∩B=A,即可得出.

解答 解:由(x+1)(x-4)=0,解得x=-1,4.
∴A={-1,4},
又B={x|x≤a},A∩B=A,
則a的值可以是4.
故選:D.

點(diǎn)評 本題考查了不等式的性質(zhì)與解法、集合的有關(guān)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.自點(diǎn)P(2,2)作圓(x-2)2+(y-3)2=1的切線l,切線l的方程y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)的定義域?yàn)镽,滿足對任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”.若函數(shù)g(x)定義域?yàn)镽,恒大于0,且對任意x1,x2∈R,恒有l(wèi)g[f(x1+x2)]<lg[f(x1)]+lg[f(x2)],則稱g(x)為“對數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時,判斷f(x)是否是“V形函數(shù)”并說明理由;
(2)當(dāng)時g(x)=5x+2判斷g(x)是否是“對數(shù)V形函數(shù)”,并說明理由;
(3)若函數(shù)f(x)是“V形函數(shù)”,且滿足對任意x∈R都有f(x)≥2,問f(x)是否是“對數(shù)V形函數(shù)”?請加以證明,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等差數(shù)列{an}中,a3+a9=18-a6,Sn表示數(shù)列{an}的前n項(xiàng)和,則S11=(  )
A.66B.99C.198D.297

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1-i}{i}$(i是虛數(shù)單位)對應(yīng)的點(diǎn)的坐標(biāo)是( 。
A.(1,1)B.(1,-1)C.(-1,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$cos(α-\frac{π}{3})=\frac{2}{3}$,α是銳角,則sinα=(  )
A.$\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{5}-\sqrt{3}}}{6}$C.$\frac{{2\sqrt{3}-\sqrt{5}}}{6}$D.$\frac{{4-\sqrt{15}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a,b,c分別是角A,B,C的對邊,若a=b=$\frac{\sqrt{3}}{3}$c,則角A=( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<m<n<2,e為自然對數(shù)的底數(shù),則下列各式中一定成立的是( 。
A.men<nemB.men>nemC.mlnn>nlnmD.mlnn<nlnm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={-1,1,2,3},B={x|x∈R,x2<3},則A∩B={-1,1}.

查看答案和解析>>

同步練習(xí)冊答案