3.已知θ為第一象限的角,sinθ-2cosθ=-$\frac{2}{5}$,則sinθ+cosθ等于( 。
A.$\frac{9}{5}$B.$\frac{8}{5}$C.$\frac{7}{5}$D.$\frac{6}{5}$

分析 由已知等式移項,平方,整理可得5cos2θ-$\frac{8}{5}$cosθ-$\frac{21}{25}$=0,結合θ為第一象限的角,即可求cosθ的值,由同角三角函數(shù)基本關系式即可求sinθ的值,即可得解sinθ+cosθ的值.

解答 解:∵sinθ-2cosθ=-$\frac{2}{5}$,則(2cosθ-$\frac{2}{5}$)2+cos2θ=1,
∴5cos2θ-$\frac{8}{5}$cosθ-$\frac{21}{25}$=0,即(cosθ-$\frac{3}{5}$)(5cosθ+$\frac{7}{5}$)=0,
又∵θ為第一象限的角,
∴cosθ=$\frac{3}{5}$,sinθ=$\frac{4}{5}$,從而sinθ+cosθ=$\frac{7}{5}$.
故選:C.

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若一個橢圓長軸的長度,短軸的長度和焦距依次成等差數(shù)列,則該橢圓的離心率是( 。
A.e=-1B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=sin(2x+φ),若$f(\frac{π}{12})-f(-\frac{5π}{12})=2$,則函數(shù)f(x)的單調增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$|\begin{array}{l}{lo{g}_{3}x}&{1}\\{2}&{1}\end{array}|$,則f-1(0)=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出下列五個結論:
①回歸直線y=bx+a一定過樣本中心點($\overline{x}$,$\overline{y}$);
②命題“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③將函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向右平移$\frac{π}{6}$后,所得到的圖象關于y軸對稱;
④?m∈R,使f(x)=(m-1)•x${\;}^{{m}^{2}-4m+3}$是冪函數(shù),且在(0,+∞)上遞增;
⑤函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x}•|lo{g}_{2}x|-1,x>0}\end{array}\right.$恰好有三個零點;
其中正確的結論為( 。
A.①②④B.①②⑤C.④⑤D.②③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中,假命題是( 。
A.“π是函數(shù)y=sinx的一個周期”或“2π是函數(shù)y=cosx的一個周期”
B.“m>0”是“函數(shù)f(x)=m+log2x(x≥1)不存在零點”的充分不必要條件
C.“若a≤b,則2a≤2b-1”的否命題
D.“任意a∈(0,+∞),函數(shù)y=ax在定義域內單調遞增”的否定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知△ABC中,角A,B,C所對邊分別為a,b,c,若$B=\frac{π}{6}$,$a=\sqrt{3}$,c=1,則b=1,△ABC的面積S=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知z1∈C,z1+2i和$\frac{{z}_{1}}{2-i}$都是實數(shù).
(1)求復數(shù)z1
(2)設z2=-$\frac{{z}_{1}}{2+4i}$+cosx,z3=1-isinx(x∈R),求|z2-z3|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在如圖所示的偽代碼中,若輸入x=0,則輸出y=-1.

查看答案和解析>>

同步練習冊答案