設橢圓
的左、右焦點分別為
,上頂點為
,離心率為
, 在
軸負半軸上有一點
,且
(1)若過
三點的圓 恰好與直線
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點
作斜率為
的直線
與橢圓C交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍;如果不存在,說明理由.
試題分析:(1)由題意
,得
,所以
又
由于
,所以
為
的中點,
所以
所以
的外接圓圓心為
,半徑
3分
又過
三點的圓與直線
相切,
所以
解得
,
所求橢圓方程為
6分
(2)有(1)知
,設
的方程為:
將直線方程與橢圓方程聯(lián)立
,整理得
設交點為
,因為
則
8分
若存在點
,使得以
為鄰邊的平行四邊形是菱形,
由于菱形對角線垂直,所以
又
又
的方向向量是
,故
,則
,即
由已知條件知
11分
,故存在滿足題意的點
且
的取值范圍 是
13分
點評:難題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓標準方程時,主要運用了橢圓的幾何性質(zhì)。對于存在性問題,往往先假設存在,利用已知條件加以探究,以明確計算的合理性。本題(III)通過確定m的表達式,利用函數(shù)思想,通過求函數(shù)的最值,確定得到其范圍。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的焦點為
,
,在長軸
上任取一點
,過
作垂直于
的直線交橢圓于點
,則使得
的點
的概率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
的焦點為
,點
在此拋物線上,且
,弦
的中點
在該拋物線準線上的射影為
,則
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知有相同兩焦點
的橢圓
和雙曲線
,
是它們的一個交點,則
的形狀是 ( )
A.銳角三角形 | B.直角三角形 | C.鈍有三角形 | D.等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
為準線的拋物線的標準方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C的長軸長為
,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
經(jīng)過點
,并且對稱軸都在坐標軸上的等軸雙曲線的方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
.
(Ⅰ)判斷曲線
在
的切線能否與曲線
相切?并說明理由;
(Ⅱ)若
求
的最大值;
(Ⅲ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設橢圓
和雙曲線
的公共焦點為
,
是兩曲線的一個交點,則
=
.
查看答案和解析>>