【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為.傾斜角為,且經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn).
(Ⅰ)寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線的直角坐標(biāo)方程;
(Ⅱ)求的值.
【答案】(Ⅰ)直線的參數(shù)方程為,( 為參數(shù))..(Ⅱ) .
【解析】【試題分析】(1)依據(jù)題設(shè)運(yùn)用直線參數(shù)方程的形式建立參數(shù)方程,再運(yùn)用直角坐標(biāo)與極坐標(biāo)之間的互化公式求解;(2)借助直線參數(shù)方程中的參數(shù)的幾何意義分析探求:
(Ⅰ)直線的參數(shù)方程為,( 為參數(shù)).
由曲線的極坐標(biāo)方程化得.
根據(jù)互化公式,可得曲線的直角坐標(biāo)方程是,
即.
(Ⅱ)將直線的參數(shù)方程,( 為參數(shù)),
代入曲線的直角坐標(biāo)方程中,化簡得.
設(shè)點(diǎn)對應(yīng)的參數(shù)值分別為,則,
∴ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)兩圓交點(diǎn)分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4.
(1)設(shè)M是PC上的一點(diǎn),求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2) 據(jù)此估計2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為減少空氣污染,某市鼓勵居民用電(減少燃?xì)饣蛉济海,采用分段計費(fèi)的方法計算:電費(fèi)每月用電不超過100度時,按每度0.57元計算;每月用電量超過100度時,其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計算.
(Ⅰ)設(shè)月用電度時,應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:
月份 | 一月 | 二月 | 三月 | 合計 |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標(biāo)號分別記做a,b,每個球被取出的可能性相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎,求中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別根據(jù)下列條件,求對應(yīng)雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為,離心率;
(2)實軸長為4的等軸雙曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com