【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為2,M,N分別為A1B,AC的中點(diǎn).
(1)證明:MN//B1C;
(2)求A1B與平面A1B1CD所成角的大。
【答案】(1)見解析;
(2)與平面所成角為.
【解析】
(1)以為原點(diǎn)建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算求得,由此證得.
(2)利用直線的方向向量和平面的法向量,求得線面角的正弦值,由此求得線面角的大小.
(1)如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA為x軸, DC為y軸,DD1為z軸建立空間直角坐標(biāo)系.
則,,, ,,.
∴ , .
∴ ,∴ ,
即 .
(2)易得,, ∴ ,.
設(shè)平面ADE的一個法向量為,
則 即
令,則,所以.
設(shè)A1B與平面A1 B1CD所成角為θ ,
則.
∴ A1B與平面A1 B1CD所成角為30°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入月份,香港大學(xué)自主招生開始報名,“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進(jìn)行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機(jī)抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖:
(1)估計(jì)五校學(xué)生綜合素質(zhì)成績的平均值;
(2)某校決定從本校綜合素質(zhì)成績排名前名同學(xué)中,推薦人參加自主招生考試,若已知名同學(xué)中有名理科生,2名文科生,試求這3人中含文科生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)輸公司有名駕駛員和名工人,有輛載重量為噸的甲型卡車和輛載重量為噸的乙型卡車.某天需運(yùn)往地至少噸的貨物,派用的車需滿載且只運(yùn)送一次.派用的每輛甲型卡車需配名工人,運(yùn)送一次可得利潤元:派用的每輛乙型卡車需配名工人,運(yùn)送一次可得利潤元,該公司合理計(jì)劃當(dāng)天派用兩類卡車的車輛數(shù),可得的最大利潤多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形,如圖.
現(xiàn)在上述圖(3)中隨機(jī)選取一個點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)該種植基地在如圖所示的長方形地塊的每個格點(diǎn)(橫縱直線的交點(diǎn))處都種了一株該種水果,其中每個小正方形的面積都為,現(xiàn)從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的平均數(shù).
附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,,E、F、H分別為AP、AB、AC的中點(diǎn),PF交BE于點(diǎn)M,CF交BH于點(diǎn)N,,.
求證:平面BEH;
求證:;
求直線PA與平面ABC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com