【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

2)記(1)中的軌跡為,過點的直線所截得的線段的長為 8,求直線的方程.

【答案】12,或

【解析】 試題分析】(1)運用兩點間距離公式建立方程進行化簡;(2)借助直線與圓的位置關(guān)系,運用圓心距、半徑、弦長之間的關(guān)系建立方程待定直線的斜率,再用直線的點斜式方程分析求解:

(1)由題意,得

化簡,得

的軌跡方程是

軌跡是以為圓心,以為半徑的圓

(2)當直線的斜率不存在時, ,

此時所截得的線段的長為,

符合題意.

當直線的斜率存在時,設的方程為

,即,

圓心到的距離,

由題意,得,

解得

∴直線的方程為

.

綜上,直線的方程為

,或.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin 5°cos 35°= ,

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此歸納出對任意角度θ都成立的一個等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,海上有、兩個相距,保持觀望所成的視角為現(xiàn)從船派下一只小艇沿方向駛至進行作業(yè),且

(1)分別表示,并求出的取值范圍;

(2)0晚上小艇在發(fā)出一道強烈的光線照射,至光線距離為,最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解大學生觀看浙江衛(wèi)視綜藝節(jié)目“奔跑吧兄弟”是否與性別有關(guān),一所大學心理學教師從該校學生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表:

喜歡看“奔跑吧兄弟”

不喜歡看“奔跑吧兄弟”

合計

女生

5

男生

10

合計

50

若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看“奔跑吧兄弟”的有6人.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為喜歡看“奔跑吧兄弟”節(jié)目與性別有關(guān)?說明你的理由;

(3)已知喜歡看“奔跑吧兄弟”的10位男生中,還喜歡看新聞,還喜歡看動畫片,還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求不全被選中的概率.

下面的臨界值表供參考:

P(χ2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在坐標原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)證明:;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=的定義域為(-1,1),滿足f(-x)=-fx),且

(1)求函數(shù)fx)的解析式;

(2)證明fx)在(-1,1)上是增函數(shù);

(3)解不等式 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,

1)當m=4時,求, ;

2)若,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案