是直線,是兩個不同的平面,下列命題成立的是(    )
A.若,則
B.若,則
C.若, 則
D.若,,則
B

試題分析:當一條直線與兩個垂直平面中的一個平面垂直,這條直線與另一個平面之間是平行或包含的關系,故A不正確,如果一條直線垂直于平行平面中一個平面,必定垂直于另一個平面,成立,選項C中,由于可能線面斜交,錯誤,選項D中,由于,,則或者l在平面內(nèi),錯誤,選B.
點評:本題考查空間中直線與平面之間的關系,是一個基礎題,這種題目只要舉出不正確選項中的反例就可以確定結論,注意題目中包含的線和面比較多,用實物演示可以更加形象.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體中.

⑴求異面直線所成的角;
⑵求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點.

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.

(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,點E在線段AD上,且CE∥AB。

求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角α-l-β為 ,動點P.Q分別在面α.β內(nèi),P到β的距離為,Q到α的距離為,則P. Q兩點之間距離的最小值為   ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

菱形邊長為,角,沿折起,使二面角 為,則折起后之間的距離是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱柱的側棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案