【題目】如圖所示,圓錐的底面半徑為2,是圓周上的定點,動點在圓周上逆時針旋轉(zhuǎn),設(shè)(),是母線的中點,已知當(dāng)時,與底面所成角為.
(1)求該圓錐的側(cè)面積;
(2)若,求的值.
【答案】(1).(2)或.
【解析】
(1)作出與底面所成角,利用,由此求得,進而求得圓錐的側(cè)面積.
(2)解法一:建立空間直角坐標(biāo)系,利用求得的值,進而求得的值.
解法二:判斷出三角形是等邊三角形,由此求得的值.
解法三:通過構(gòu)造直角三角形的方法,求得的值,進而求得的值.
(1),,
設(shè)為中點,連接,則∥,
∵平面,∴平面,
∴
在Rt△中,,,得:,
得:,,
∴,
.
(2)解法一:如圖建立空間直角坐標(biāo)系,
則,,
,,
,
,
由題意,,
∵,∴或.
解法二:設(shè)為中點,連接,則∥, ∴,
又∵,可得:平面,∴,
∴△是等邊三角形,
∴或.
解法三:設(shè)為中點,連接,∴
設(shè)為中點,連接,∴,
在△中,由余弦定理有:,
∴在Rt△中,,在△中,,
∴在Rt△中,,即得,
∵,∴或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓相外切,且與直線相切.
(1)記圓心的軌跡為曲線,求的方程;
(2)過點的兩條直線與曲線分別相交于點和,線段和的中點分別為.如果直線與的斜率之積等于1,求證:直線經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點,動點在圓上,過作軸的垂線,垂足為,點滿足.
(1)求點的軌跡的方程;
(2)直線上的點滿足.過點作直線垂直于線段交于點.
(。┳C明:恒過定點;
(ⅱ)設(shè)線段交于點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為助力湖北新冠疫情后的經(jīng)濟復(fù)蘇,某電商平臺為某工廠的產(chǎn)品開設(shè)直播帶貨專場.為了對該產(chǎn)品進行合理定價,用不同的單價在平臺試銷,得到如下數(shù)據(jù):
單價(元/件) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(萬件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根據(jù)以上數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若該產(chǎn)品成本是4元/件,假設(shè)該產(chǎn)品全部賣出,預(yù)測把單價定為多少時,工廠獲得最大利潤?
(參考公式:回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)若點坐標(biāo)為,直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為平行四邊形,,且,,是棱的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下三個條件:
①數(shù)列是首項為 2,滿足的數(shù)列;
②數(shù)列是首項為2,滿足(λ∈R)的數(shù)列;
③數(shù)列是首項為2,滿足的數(shù)列..
請從這三個條件中任選一個將下面的題目補充完整,并求解.
設(shè)數(shù)列的前n項和為,與滿足______,記數(shù)列,,求數(shù)列{}的前n項和;
(注:如選擇多個條件分別解答,按第一個解答計分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com