如圖,已知,本棱柱ABC-A1B1C1的各棱長都是4,E是BC的中點,動點F在側(cè)棱CC1上,且不與點C重合.

(Ⅰ) 當CF=1時,求證:EF⊥A1E

(Ⅱ)設二面角C-AF-E的大小為,求的最小值.

本小題主要考查空間直線與平面的位置關系和二面角等基礎知識,同時考查空間想象能

力、推理論證能力和運算求解能力.

解析:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)如圖,已知直三棱柱ABCA1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,DA A1的中點. (Ⅰ)求異面直線ABC1D所成的角(用反三角函數(shù)表示);(Ⅱ)若EAB上一點,試確定點EAB上的位置,使得A1EC1D;

(Ⅲ)在(Ⅱ)的條件下,求點D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市西城區(qū)高三第二次模擬考試數(shù)學(理) 題型:解答題

(本小題滿分13分)
如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。
(I)求證:C1D//平面ABB1A1;
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三12月月考數(shù)學理卷 題型:解答題

(本小題滿分12分)如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。

   (I)求證:C1D//平面ABB1A1;

   (II)求直線BD1與平面A1C1D所成角的正弦值;

   (Ⅲ)求二面角D—A1C1—A的余弦值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年內(nèi)蒙古高三第一次月考理科數(shù)學卷 題型:解答題

(本小題滿分12分)

如圖,已知正三棱柱ABCA1B1C1的底面邊長是2,DCC1的中點,直線AD與側(cè)面BB1C1C所成的角是45°.

   (I)求二面角ABDC的大;

   (II)求點C到平面ABD的距離.

                

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年云南省高三第一次月考理科數(shù)學卷 題型:解答題

(本小題滿分12分)

                      如圖,已知正三棱柱ABCA1B1C1的底面邊長是2,DCC1的中點,直線AD與側(cè)面BB1C1C所成的角是45°.

   (I)求二面角ABDC的大;

   (II)求點C到平面ABD的距離.

                   

 

查看答案和解析>>

同步練習冊答案