數(shù)學(xué)公式的值等于


  1. A.
    1+ln2
  2. B.
    數(shù)學(xué)公式
  3. C.
    1-ln2
  4. D.
    數(shù)學(xué)公式
D
分析:根據(jù)題意,直接找出被積函數(shù)x-的原函數(shù),直接計(jì)算在區(qū)間(1,2)上的定積分即可.
解答:∵(lnx)′=
=(-lnx)|12=2-ln2-=-ln2
故選D.
點(diǎn)評(píng):本題考查定積分的基本運(yùn)算,關(guān)鍵是找出被積函數(shù)的原函數(shù),本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)當(dāng)a=2時(shí),求f (x)的極小值;
(2)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.
求證:g(x)的極大值小于等于
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二第四學(xué)段模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3x2+ax.

(Ⅰ)當(dāng)a=2時(shí),求f (x)的極小值;

(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.求證:g(x)的極大值小于等于

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3x2ax

(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;

(Ⅱ)若函數(shù)g(x)=x3bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.

求證:g(x)的極大值小于等于

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省模擬題 題型:解答題

已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3x2+ax.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.
求證:g(x)的極大值小于等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(1)當(dāng)a=2時(shí),求f (x)的極小值;
(2)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.
求證:g(x)的極大值小于等于

查看答案和解析>>

同步練習(xí)冊(cè)答案