已知 是數(shù)列的前項(xiàng)和,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列 的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);

(3)記數(shù)列的前的和為,若恒成立,求正整數(shù)的最小值。

 

【答案】

(1)

(2)數(shù)列共有3個變號數(shù),即變號數(shù)為3     (3)正整數(shù)的最小值為23.

【解析】本試題主要是考查了數(shù)列的通項(xiàng)公式的求解,以及數(shù)列的求和的綜合運(yùn)用,以及與不等式相結(jié)合的恒成立問題的運(yùn)用。

(1)根據(jù)數(shù)列的前n項(xiàng)和與其通項(xiàng)公式的關(guān)系,求數(shù)列的通項(xiàng)公式;

(2)根據(jù)新定義,設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列 的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù)即解不等式,然后得到結(jié)論。

(3)根據(jù)數(shù)列的前項(xiàng)的和為,令

   ,然后根據(jù)不等式恒成立得到結(jié)論。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省景德鎮(zhèn)市高三下學(xué)期第三次(期中)質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是數(shù)列的前項(xiàng)和,且對任意,有,

的通項(xiàng)公式;

求數(shù)列的前項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

 已知是數(shù)列的前項(xiàng)和,向量,,且滿足,則        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三下學(xué)期2月月考理科數(shù)學(xué) 題型:解答題

12分)已知是數(shù)列的前項(xiàng)和,且對任意,有.記.其中為實(shí)數(shù),且.

  (1)當(dāng)時,求數(shù)列的通項(xiàng);

  (2)當(dāng)時,若對任意恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市虹口區(qū)高三第一學(xué)期期末教學(xué)質(zhì)量監(jiān)控測試卷數(shù)學(xué) 題型:解答題

(15分)已知是數(shù)列的前項(xiàng)和,),且

(1)求的值,并寫出的關(guān)系式;

(2)求數(shù)列的通項(xiàng)公式及的表達(dá)式;

(3)我們可以證明:若數(shù)列有上界(即存在常數(shù),使得對一切 恒成立)且單調(diào)遞增;或數(shù)列有下界(即存在常數(shù),使得對一切恒成立)且單調(diào)遞減,則存在.直接利用上述結(jié)論,證明:存在.

 

查看答案和解析>>

同步練習(xí)冊答案