3.如圖是比賽中某選手的 7 個(gè)得分的莖葉圖,則這7個(gè)分?jǐn)?shù)的方差為( 。
A.$\frac{116}{9}$B.$\frac{34}{7}$C.36D.$\frac{{6\sqrt{7}}}{7}$

分析 根據(jù)已知中的莖葉圖,分別計(jì)算出這組數(shù)據(jù)的平均數(shù),方差,可得答案.

解答 解:已知中的莖葉圖的數(shù)據(jù)分別為:87,89,91,91,92,93,94,
其平均數(shù)為:$\frac{1}{7}$(87+89+91+91+92+93+94)=91,
方差為:$\frac{1}{7}$[(87-91)2+(89-91)2+(91-91)2+(91-91)2+(92-91)2+(93-91)2+(94-91)2]
=$\frac{34}{7}$,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是莖葉圖,平均數(shù)與方差,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2017(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an},如果a4=7,a8=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=2n+an,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某班50名學(xué)生一次調(diào)研考試的數(shù)學(xué)成績(滿分:100分)的頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖,完成以下頻數(shù)分布表:
成績[60,70)[70,80)[80,90)[90,100)
頻數(shù)    
(Ⅱ)用分層抽樣的方法從成績?cè)赱70,80)和[90,100)的學(xué)生中抽取4人,求成績?cè)赱70,80)和[90,100)中抽取的人數(shù);
(Ⅲ)估計(jì)這50名學(xué)生的數(shù)學(xué)成績的平均分及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間[0,5]內(nèi)隨機(jī)選一個(gè)數(shù),則它是不等式log2(x-1)<1的解的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列直線是函數(shù)$y=-2sin(\frac{1}{2}x-\frac{π}{6})$的對(duì)稱軸的是( 。
A.x=πB.$x=\frac{π}{2}$C.$x=\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=ax3+3x2-x在R上是減函數(shù),則a的取值范圍為(  )
A.(-∞,3)B.(-∞,-3]C.[3,+∞)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(I)求直線l的極坐標(biāo)方程; 
(II)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ>0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,c=2$\sqrt{2}$,b2-a2=16,則角C的最大值為60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案