精英家教網 > 高中數學 > 題目詳情
過點(-1,3)且平行于直線x-2y+3=0的直線方程為( 。
A、x-2y=0
B、2x+y-1=0
C、x-2y+7=0
D、2x+y-5=0
考點:直線的一般式方程與直線的平行關系
專題:直線與圓
分析:由平行關系設直線方程,代點求系數即可.
解答: 解:由平行關系可設要求直線方程為x-2y+c=0,
代入點(-1,3)可得-1-2×3+c=0,解得c=7
∴所求直線的方程為:x-2y+7=0
故選:C.
點評:本題考查直線的一般式方程和平行關系,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a是實數,則“a=1”是“a2=1”的( 。
A、充分而不必要條件
B、必要而不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

關于x的不等式x2-ax-6a2<0(a>0)的解集為(x1,x2),且x2-x1=10,則a=( 。
A、2
B、5
C、
5
2
D、
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

若點O和點F分別為橢圓
x2
2
+y2
=1的中心和左焦點,點P為橢圓上的任意一點,則
OP
FP
的最大值為( 。
A、
2
+2
B、
2
-1
C、
2
+4
D、
2
+
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知銳角三角形ABC的外接圓的圓心為O,半徑為R,已知∠A=30°且
AB
|AB|
cosB+
AC
|AC|
cosC=
m
R
AO
,則m=( 。
A、-
3
2
B、
3
C、2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

下列函數中,既是奇函數,又在(0,+∞)上是減函數的是(  )
A、y=
2
x
B、y=x2
C、y=x
D、y=-x+1

查看答案和解析>>

科目:高中數學 來源: 題型:

某中學高二年級的甲、乙兩個班中,需根據某次數學預賽成績選出某一班的7名學生參加數學競賽決賽,已知這次預賽他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班7名學生成績的平均分是81,乙班7名學生成績的中位數是78.
(1)求出x,y的值,且分別求甲、乙兩個班中7名學生成績的方差S12、S22,并根據結果,你認為應該選哪一個班的學生參加決賽?
(2)從成績在80分以上的學生中隨機抽取2名,求甲班至少有1名學生被抽到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱柱ABC-A1B1C1中,M、N分別是AB、A1C的中點,求證:MN∥平面BCB1C1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓E1
x2
a2
+
y2
b2
=1(a>b>0)橢圓E2的中心在坐標原點,焦點在x軸上,其長軸長和短軸長分別是橢圓E1長軸長和短軸長的
λ
倍(λ>0,λ≠1).
(Ⅰ)求橢圓E2的方程;并證明橢圓E1,E2的離心率相同;
(Ⅱ)當λ=2時,設M,N是橢圓E1上的兩個點,OM,ON的斜率分別是kOM,kON,且kOM•kON=-
b2
a2
(O是坐標原點),若OMPN是平行四邊形,證明:點P在橢圓E2上.

查看答案和解析>>

同步練習冊答案