【題目】某企業(yè)招聘中,依次進(jìn)行A科、B科考試,當(dāng)A科合格時,才可考B科,且兩科均有一次補(bǔ)考機(jī)會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設(shè)他不放棄每次考試機(jī)會,且每次考試互不影響.
(1)求甲恰好3次考試通過的概率;
(2)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

【答案】
(1)解:設(shè)甲“第一次考A科成績合格”為事件A1,“A科補(bǔ)考后成績合格”為事件A2,

“第一次考B科成績合格”為事件B1,“B科補(bǔ)考后成績合格”為事件B2

甲參加3次考試通過的概率為:


(2)解:由題意知,ξ可能取得的值為:2,3,4

=

分布列(如表)

ξ

2

3

4

P


【解析】設(shè)甲“第一次考A科成績合格”為事件A1 , “A科補(bǔ)考后成績合格”為事件A2 , “第一次考B科成績合格”為事件B1 , “B科補(bǔ)考后成績合格”為事件B2 . (1)甲參加3次考試,是指補(bǔ)考一次,且合格;(2)確定ξ可能取得的值,求出相應(yīng)的概率,進(jìn)而可得ξ的分布列和期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項為常數(shù)項.
(1)求n;
(2)求含x2項的系數(shù);
(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ , ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)y= 的定義域為(
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB,AC3, BC2,P是△ABC內(nèi)的一點.

(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;

(2)若∠BPC,設(shè)∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進(jìn)行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓的直徑,點在圓上,且,矩形所在的平面和圓所在的平面垂直,且.

1)求證:平面平面;

2)在線段上是否存在了點,使得平面?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案