已知函數(shù),xÎR.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.
(1)=,遞增區(qū)間為;(2)
解析試題分析:(Ⅰ)先用正弦、余弦二倍角公式將角統(tǒng)一,再用化一公式,將整理成的形式。根據(jù)公式求周期,將角視為整體,代入正弦的單調(diào)增區(qū)間,即可求得的范圍,即的單調(diào)遞增區(qū)間。(Ⅱ)由(Ⅰ)知,函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的得到的圖像,再向左平移單位得到的圖像。根據(jù)的范圍,求整體角的范圍,再根據(jù)正弦函數(shù)圖像求的范圍,即可求得函數(shù)在區(qū)間上的最小值。
試題解析:解:(1)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/0f/9/u1kc3.png" style="vertical-align:middle;" />
= 4分
函數(shù)f(x)的最小正周期為=. 6分
由,,
得f(x)的單調(diào)遞增區(qū)間為 , . 8分
(2)根據(jù)條件得=,當(dāng)時(shí),,
所以當(dāng)x=時(shí),. 12分
考點(diǎn):1正弦、余弦二倍角公式、化一公式;2三角函數(shù)伸縮平移變換;3三角函數(shù)的單調(diào)區(qū)間及最值;4三角函數(shù)圖像。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=(弦´矢+矢2).弧田(如圖),由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長,“矢”等于半徑長與圓心到弦的距離之差.
按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于9米的弧田.
(1)計(jì)算弧田的實(shí)際面積;
(2)按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得結(jié)果與(1)中計(jì)算的弧田實(shí)際面積相差多少平方米?(結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)增區(qū)間;
(2)已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊長,若f=3,且a=2,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)求方程的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)在上的最小值,并寫出取最小值時(shí)相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,分別為角的對(duì)邊,的面積S滿足
(Ⅰ)求角A的值;
(Ⅱ)若,設(shè)角B的大小為x,用x表示c,并求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)求的最小值及取最小值時(shí)的集合;
(2)求在時(shí)的值域;
(3)在給出的直角坐標(biāo)系中,請(qǐng)畫出在區(qū)間上的圖像(要求列表,描點(diǎn)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com