已知圓經(jīng)過兩點(diǎn)和,且圓心在直線上。
(Ⅰ)求圓的方程;
(Ⅱ)若以圓為底面的等邊圓錐(軸截面為正三角形),求其內(nèi)接正方體的棱長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一6月月考數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知圓經(jīng)過點(diǎn)和點(diǎn),且圓心在直線上,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn).
求圓的方程, 同時(shí)求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知圓經(jīng)過點(diǎn)和點(diǎn),且圓心在直線上,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn).
(1)求圓的方程, 同時(shí)求出的取值范圍;
(2)是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆北京師大附中高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知圓經(jīng)過兩點(diǎn)和,且圓心在直線上。
(Ⅰ)求圓的方程;
(Ⅱ)若以圓為底面的等邊圓錐(軸截面為正三角形),求其內(nèi)接正方體的棱長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆北京市高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
已知圓經(jīng)過兩點(diǎn)和,且圓心在直線上。
(Ⅰ)求圓的方程;
(Ⅱ)若以圓為底面的等邊圓錐(軸截面為正三角形),求其內(nèi)接正方體的棱長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com