己知函數(shù)f(x)=4sin2(
π
4
+x)-2
3
cos2x-1
,且給定條件P:x<
π
4
x>
π
2
,
(1)求¬P的條件下,求f(x)的最值;
(2)若條件q:-2<f(x)-m<2,且¬p是q的充分條件,求實(shí)數(shù)m的取值范圍.
(1)∵f(x)=4sin2(
π
4
+x)-2
3
cos2x-1

=4×
1-cos(
π
2
+2x)
2
-2
3
cos2x-1
=2sin2x-2
3
cos2x+1
=4sin(2x-
π
3
)+1;
∵條件P:x<
π
4
x>
π
2
,
?P:
π
4
≤x≤
π
2

π
6
≤2x-
π
3
3
,
1
2
≤sin(2x-
π
3
)≤1,
∴3≤4sin(2x-
π
3
)+1≤5.
∴f(x)的最大值為為5,f(x)的最小值為3;
(2)∵條件q:-2<f(x)-m<2,
∴m-2<f(x)<2+m,
又,?p是q的充分條件,而?p條件下,3≤f(x)=4sin(2x-
π
3
)+1≤5,
∴[3,5]⊆(m-2,m+2),
m-2<3
m+2>5
解得:3<m<5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=4sin2(
π
4
+x)-2
3
cos2x-1
,且給定條件P:x<
π
4
x>
π
2
,
(1)求¬P的條件下,求f(x)的最值;
(2)若條件q:-2<f(x)-m<2,且¬p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

己知函數(shù)f(x)=,AR.

1)證明:函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(A,1)成中心對稱圖形;

 (2)當(dāng) x[A+1,A+2]時(shí),求證:f(x) [2,];

 (3)我們利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對于給定的定義域中的x1,x2=f(x1),x3=f(x2),…,xn=f(xn1),….

在上述構(gòu)造數(shù)列的過程中,如果xi+(I=2,,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.

如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求實(shí)數(shù)A的取值范圍;

如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{ xn},求實(shí)數(shù)A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川眉山市高三上學(xué)期一診測理科數(shù)學(xué)試卷(解析版) 題型:選擇題

己知函數(shù)f(x)=在[-1,1]上的最大值為M(a) ,若函數(shù)g(x)=M(x)-有4個(gè)零點(diǎn),則實(shí)數(shù)t的取值范圍為(      )

A.(1,)                          B.(1,-1)

C.(1,-1)(1, )        D.(1,-1)(1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川眉山市高三上學(xué)期一診測文科數(shù)學(xué)試卷(解析版) 題型:選擇題

己知函數(shù)f(x)=在[-1,1]上的最大值為M(a),則函數(shù)g(x)=M(x)-的零點(diǎn)個(gè)數(shù)為

A. 1個(gè)            B. 2個(gè)               C. 3個(gè)               D. 4個(gè)

 

查看答案和解析>>

同步練習(xí)冊答案