把正整數(shù)排列成如圖所示的數(shù)陣.
(Ⅰ)求數(shù)陣中前10行所有的數(shù)的個(gè)數(shù);
(Ⅱ)求第n行最左邊的數(shù);
(Ⅲ)2007位于數(shù)陣的第幾行的第幾個(gè)數(shù)(從左往右數(shù)).

【答案】分析:(Ⅰ)數(shù)陣的第n行有n個(gè)數(shù),所以前10行的數(shù)的個(gè)數(shù)有:1+2+3+…+10=55;
(Ⅱ)求得第n行最右邊的數(shù)為n(n+1),則第n行最左邊的數(shù)為為n(n+1)-(n-1);
(Ⅲ)由1+2+3+…+63=1954,1+2+3+…+64=2016.可得2007位于數(shù)陣的第63行,而2007-1954=53,可得第第54位.
解答:解:(Ⅰ)數(shù)陣的第n行有n個(gè)數(shù),所以前10行的數(shù)的個(gè)數(shù)有:
1+2+3+…+10=55.
(Ⅱ)前n行所有個(gè)數(shù)為:1+2+3+…+n=
所以,第n行最右邊的數(shù)為 
第n行最左邊的數(shù)為n(n+1)-(n-1)=n2-n+1,
(Ⅲ)又n=63時(shí),第63行最左邊的數(shù)為:×63×62+1=1954,
第63行最右邊的數(shù)為:×64×63=2016,
所以2007位于第63行,
又因?yàn)?007-1954=53,
故2007位于第63行的第54位.
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,著重考查等差數(shù)列的求和公式的應(yīng)用,突出考查觀察問題、分析問題、解決問題的能力,考查學(xué)生數(shù)學(xué)的思維品質(zhì),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)排列成如圖所示的數(shù)陣.
(Ⅰ)求數(shù)陣中前10行所有的數(shù)的個(gè)數(shù);
(Ⅱ)求第n行最左邊的數(shù);
(Ⅲ)2007位于數(shù)陣的第幾行的第幾個(gè)數(shù)(從左往右數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•廣州模擬)把正整數(shù)排列成如圖所示的數(shù)陣.
(Ⅰ)求數(shù)陣中前10行所有的數(shù)的個(gè)數(shù)及第10行最右邊的數(shù);
(Ⅱ)求第n行最左邊及最右邊的數(shù);
(Ⅲ)2007位于數(shù)陣的第幾行的第幾個(gè)數(shù)(從左往右數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣州模擬 題型:解答題

把正整數(shù)排列成如圖所示的數(shù)陣.
(Ⅰ)求數(shù)陣中前10行所有的數(shù)的個(gè)數(shù)及第10行最右邊的數(shù);
(Ⅱ)求第n行最左邊及最右邊的數(shù);
(Ⅲ)2007位于數(shù)陣的第幾行的第幾個(gè)數(shù)(從左往右數(shù)).
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年廣州市普通高中11月學(xué)業(yè)水平測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

把正整數(shù)排列成如圖所示的數(shù)陣.
(Ⅰ)求數(shù)陣中前10行所有的數(shù)的個(gè)數(shù)及第10行最右邊的數(shù);
(Ⅱ)求第n行最左邊及最右邊的數(shù);
(Ⅲ)2007位于數(shù)陣的第幾行的第幾個(gè)數(shù)(從左往右數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案