1.已知$f(x)=\left\{{\begin{array}{l}{4x-{x^2},x<1}\\{{e^x},x≥1}\end{array}}\right.$,若方程f(x)=kx有且僅有一個實數(shù)解,則實數(shù)k的取值范圍為(-∞,e).

分析 畫出分段函數(shù)與y=kx的圖象,利用方程f(x)=kx有且僅有一個實數(shù)解,判斷看的范圍即可.

解答 解:$f(x)=\left\{{\begin{array}{l}{4x-{x^2},x<1}\\{{e^x},x≥1}\end{array}}\right.$,若方程f(x)=kx有且僅有一個實數(shù)解,
就是分段函數(shù)與y=kx的圖象只有一個交點,如圖:

顯然k小于OA的斜率時滿足題意,y=ex,x≥1,導(dǎo)函數(shù)為y′=ex,是增函數(shù),當(dāng)x=1時函數(shù)取得最小值,此時OA的斜率最小,最小值為:e,可得k<e.
故答案為:(-∞,e).

點評 本題考查函數(shù)的零點的求法,導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.與α=$\frac{π}{12}$+2kπ(k∈Z)終邊相同的角是( 。
A.345°B.375°C.-$\frac{11}{12}$πD.$\frac{23}{12}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定義域是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,0]C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={1,4},B={y|y=log2x,x∈A},則A∪B=( 。
A.{1,4}B.{0,1,4}C.{0,2}D.{0,1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a,b∈R,i是虛數(shù)單位,若(1-2i)(2+ai)=b-2i,則a+b的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,上頂點為B,若△BF1F2的周長為6,且點F1到直線BF2的距離為b.
(1)求橢圓C的方程;
(2)設(shè)A1,A2是橢圓C長軸的兩個端點,點P是橢圓C上不同于A1,A2的任意一點,直線A1P交直線x=m于點M,若以MP為直徑的圓過點A2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點到漸近線的距離為2,且雙曲線的一條漸近線與直線x-2y+3=0平行,則雙曲線的方程為(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.${x^2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1
(2)求證:AC1∥平面CDB1;
(3)求二面角A-BC1-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的遞減區(qū)間為( 。
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案