定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下面關(guān)于f(x)的判斷:
①f(x)是周期函數(shù);  
②f(x)在[0,1]上是增函數(shù);
③f(x)在[1,2]上是減函數(shù);
④f(x)關(guān)于直線x=1對(duì)稱.
其中正確判斷的序號(hào)為
①④
①④
(寫(xiě)出所有正確判斷的序號(hào)).
分析:由f(x+1)=-f(x)可得f(x+2)=f(x),即可得周期T,可判斷①;
由f(x)為偶函數(shù)且在[-1,0]上單增可得f(x)在[0,1]上的單調(diào)性,可判斷②;
再根據(jù)周期函數(shù)的性質(zhì),且在[-1,0]上是增函數(shù),推出y=f(x)的圖象關(guān)于x=1對(duì)稱,故f(x)在[1,2]上為增函數(shù),可判斷③④.
解答:解:由f(x+1)=-f(x)可得f(x+2)=-f(x+1)=-[-f(x)]=f(x),即可得周期T=2,故①正確;
由f(x)為偶函數(shù)且在[-1,0]上單增可得f(x)在[0,1]上是減函數(shù),故②錯(cuò);
由于f(x)在[0,1]上是減函數(shù),
又∵f(x+2)=f(x)=f(-x),
∴y=f(x)的圖象關(guān)于x=1對(duì)稱,故f(x)在[1,2]上為增函數(shù),f(2)=f(0),故③錯(cuò),④正確.
故答案為:①④
點(diǎn)評(píng):本題考查函數(shù)的周期性,函數(shù)的單調(diào)性及單調(diào)區(qū)間,函數(shù)奇偶性的應(yīng)用,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當(dāng)x∈[0,
π
2
]
時(shí),f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí)有f(2+x)=f(x),且x∈[0,2)時(shí),f(x)=2x-1,則f(2010)+f(-2011)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個(gè)不相等的銳角,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:
①f(x)是周期函數(shù);
②f(x)的圖象關(guān)于x=l對(duì)稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號(hào)是
①②④
①②④
.(請(qǐng)把正確命題的序號(hào)全部寫(xiě)出來(lái))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當(dāng)x≥0時(shí),f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫(huà)出函數(shù)的圖象;
(Ⅱ)寫(xiě)出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案