8.已知函數(shù)f(x)=2cos(2x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$),則f(x)的值域為(-$\sqrt{2}$,2].

分析 由條件利用余弦函數(shù)的定義域和值域,求得f(x)的值域.

解答 解:對于函數(shù)f(x)=2cos(2x-$\frac{π}{4}$),∵x∈[0,$\frac{π}{2}$),
∴2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$),∴cos(2x-$\frac{π}{4}$)∈(-$\frac{\sqrt{2}}{2}$,1],
故2cos(2x-$\frac{π}{4}$)∈(-$\sqrt{2}$,2],
故答案為:(-$\sqrt{2}$,2].

點評 本題主要考查余弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(2015年1月•豐臺期末•16)如圖.某機器人的運動軌道是邊長為1米的正三角形ABC.開機后它從A點出發(fā),沿軌道先逆時針運動再順時針運動,每運動6米改變-次運動方向(假設(shè)按此方式無限運動下去).運動過程中隨時記錄逆時針運動的總路程s1和順時針運動的總路程s2.x為該機器人的“運動狀態(tài)參數(shù)”,規(guī)定:逆時針運動時x=s1,順時針運動時x=-s2.機器人到A點的距離d與x滿足函數(shù)關(guān)系d=f(x).現(xiàn)有如下結(jié)論:
①f(x)的值域為[0.1];                                            
②f(x)是以3為周期的函數(shù);
③f(x)是定義在R上的奇函數(shù):
④f(x)在區(qū)間產(chǎn)[-3.-2]上單調(diào)遞增.
其中正確的有①②④(寫出所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線l與橢圓4x2+y2=4交于P,Q兩點,若OP⊥OQ,則l在兩坐標(biāo)軸上的截距乘積最小值為( 。
A.$\frac{5}{6}$B.$\frac{8}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(z)=z-2i,z1=3+4i,z2=-2-i,則f(z1-z2)等于( 。
A.1-5iB.-2+9iC.-2-iD.5+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC的面積S滿足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函數(shù)f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=x2-4x(x∈[0,5])的值域為( 。
A.[-4,+∞)B.[-4,5]C.[-4,0]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若定義在區(qū)間(-1,0)內(nèi)的函數(shù)f(x)=log2a(x+1)為減函數(shù),則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.( $\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“正方形是平行四邊形”逆否命題為如果一個四邊形不為平行四邊形,則這個四邊形不為正方形.

查看答案和解析>>

同步練習(xí)冊答案