如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,,,平面底面,中點(diǎn),M是棱PC上的點(diǎn),

(1)若點(diǎn)M是棱PC的中點(diǎn),求證:平面;
(2)求證:平面底面;
(3)若二面角M-BQ-C為,設(shè)PM=tMC,試確定t的值.
(1)見解析;(2)見解析;(3)3.

試題分析:(1)連接AC,交BQ于N,連接MN,在三角形PAC中,利用中位線定理證明PA//MN,由線線平行得線面平行;(2)證PQ⊥AD,QB⊥AD,由PQ∩BQ=Q,所以AD⊥平面PBQ,再利用線面垂直得面面垂直;(3)先證PQ⊥面ABCD,(注意此步不可省略),再以Q為原點(diǎn)建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo)及平面BQC的法向量,并設(shè),利用關(guān)系PM=tMC,用坐標(biāo)表示出來(lái),列方程解出,并得,
,從而易得平面MBQ法向量為,再由數(shù)量積運(yùn)算得,可得t值.
試題解析:證明:(1)連接AC,交BQ于N,連接MN.         1分
∵BC∥AD且BC=AD,即BCAQ.∴四邊形BCQA為平行四邊形,且N為AC中點(diǎn),
又∵點(diǎn)M是棱PC的中點(diǎn),∴ MN // PA                             2分
∵ MN平面MQB,PA平面MQB,       3分
∴ PA // 平面MBQ.                    4分
(2)∵AD // BC,BC=AD,Q為AD的中點(diǎn),∴四邊形BCDQ為平行四邊形,∴CD // BQ .   6分
∵∠ADC=90°   ∴∠AQB=90° 即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,        7分
∴BQ⊥平面PAD.                                    8分
∵BQ平面PQB,∴平面PQB⊥平面PAD.                   9分
另證:AD // BC,BC=AD,Q為AD的中點(diǎn)∴ BC // DQ 且BC= DQ, 
∴ 四邊形BCDQ為平行四邊形,∴CD // BQ .
∵ ∠ADC=90°   ∴∠AQB=90° 即QB⊥AD.           6分
∵ PA=PD, ∴PQ⊥AD.                          7分
∵ PQ∩BQ=Q,∴AD⊥平面PBQ.                    8分
∵ AD平面PAD,∴平面PQB⊥平面PAD.                         9分
(Ⅲ)∵PA=PD,Q為AD的中點(diǎn), ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD.     10分
(不證明PQ⊥平面ABCD直接建系扣1分)
如圖,以Q為原點(diǎn)建立空間直角坐標(biāo)系.

則平面BQC的法向量為;
,,,.   11分
設(shè),
,,∵,
,   ∴     ,         12分
在平面MBQ中,,,
∴ 平面MBQ法向量為.                13分
∵二面角M-BQ-C為30°, ,∴ .  14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(1)求證:平面平面;
(2)當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.
(3)在(2)的條件下若F是PD的靠近P的一個(gè)三等分點(diǎn),求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,,點(diǎn)D是AB的中點(diǎn),

求證:(1); (2)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,平行四邊形中,,,,正方形所在平面與平面垂直,分別是的中點(diǎn)。

⑴求證:平面;
⑵求平面與平面所成的二面角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰梯形中,是梯形的高,,,現(xiàn)將梯形沿折起,使,且,得一簡(jiǎn)單組合體如圖所示,已知分別為的中點(diǎn).

(1)求證:平面;
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知長(zhǎng)方體中,底面為正方形,,,,點(diǎn)在棱上,且

(Ⅰ)試在棱上確定一點(diǎn),使得直線平面,并證明;
(Ⅱ)若動(dòng)點(diǎn)在底面內(nèi),且,請(qǐng)說(shuō)明點(diǎn)的軌跡,并探求長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四面體中,、分別是、的中點(diǎn),

(Ⅰ)求證:平面;
(Ⅱ)求異面直線所成角余弦值的大;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,,

(Ⅰ)證明:;
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列命題中,真命題是           (將真命題前面的編號(hào)填寫在橫線上).
①已知平面、和直線、,若,,則
②已知平面、和兩異面直線,若,,,則
③已知平面、、和直線,若,,則
④已知平面、和直線,若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案