P是雙曲線
x2
9
-
y2
16
=1
的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為______.
雙曲線
x2
9
-
y2
16
=1
中,
∵a=3,b=4,c=5,
∴F1(-5,0),F(xiàn)2(5,0),
∵|PF1|-|PF2|=2a=6,
∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|+|NF2|,
∴-|PN|≤-|PF2|+|NF2|,
所以,|PM|-|PN|≤|PF1|+|MF1|-|PF2|-|NF2|
=6+1+2
=9.
故答案為:9.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知P(x,y)是中心在原點,焦距為10的雙曲線上一點,且
y
x
的取值范圍為(-
3
4
3
4
),則該雙曲線方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•溫州二模)已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)與橢圓
x2
9
+
y2
5
=1
的共同焦點,若點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是(  )

查看答案和解析>>

同步練習冊答案