7.已知$\sqrt{2}$<a<2,則函數(shù)f(x)=$\sqrt{{a}^{2}-{x}^{2}}$+|x|-2的零點(diǎn)個數(shù)為4.

分析 利用函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點(diǎn)問題,利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化求解即可.

解答 解:函數(shù)f(x)的零點(diǎn)即方程$\sqrt{{a^2}-{x^2}}+|x|-2=0$的根,即$\sqrt{{a^2}-{x^2}}=-|x|+2$的根,
設(shè)$g(x)=\sqrt{{a^2}-{x^2}},h(x)=-|x|+2$,
g(x)的軌跡表示以原點(diǎn)為圓心半徑為a的圓的上半部分,
作出兩函數(shù)圖象,
由圖象觀察可知有4個交點(diǎn),即函數(shù)ff(x)有4個零點(diǎn),
故答案為:4.

點(diǎn)評 本題主要考查函數(shù)零點(diǎn)個數(shù)的判斷,利用函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)圖象的交點(diǎn)個數(shù)問題是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合進(jìn)行求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=sinx-$\sqrt{3}$cosx(1)最大、小值;(2)最小正周期;(3)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)(1,2)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),數(shù)列{an}的前n項(xiàng)和Sn=f(n)-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}前2016項(xiàng)中的第3項(xiàng),第6項(xiàng),…,第3k項(xiàng)刪去,求數(shù)列{an}前2016項(xiàng)中剩余項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=cos2x+2sinx的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列五個導(dǎo)數(shù)式:
①(x4)′=4x3;
②(cosx)′=sinx;  
③(2x)′=2xln2;
④${(lnx)^'}=-\frac{1}{x}$;
⑤${(\frac{1}{x})^'}=\frac{1}{x^2}$.
其中正確的導(dǎo)數(shù)式共有(  )
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若樣本4,5,7,x,9的平均數(shù)為7,則該樣本的方差為$\frac{26}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果點(diǎn)P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}(n=1,2,3…)的前n項(xiàng)和Sn滿足Sn=2an-a3,且a1,a2+1,a3成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;  
(Ⅱ)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,某地區(qū)舉辦了小學(xué)生“數(shù)獨(dú)比賽”.比賽成績共有90分,70分,60分,40分,30分五種,按本次比賽成績共分五個等級.從參加比賽的學(xué)生中隨機(jī)抽取了30名學(xué)生,并把他們的比賽成績按這五個等級進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)表:
成績等級ABCDE
成績(分)9070604030
人數(shù)(名)461073
(1)根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),試估計(jì)從本地區(qū)參加“數(shù)獨(dú)比賽”的小學(xué)生中任意抽取一人,其成績等級為“A或B”的概率;
(2)從這30名學(xué)生中,隨機(jī)選取2人,求“這兩個人的成績之差大于20分”的概率.

查看答案和解析>>

同步練習(xí)冊答案