(1)A:|p|≥2,p∈R,B:方程x2+px+p+3=0有實根;?
(2)A:圓x2+y2=r2與直線ax+by+c=0相切,B:c2=(a2+b2)r2.?
思路分析:A是指條件,B是指結(jié)論.?
若AB,則A是B的充分條件,?
若BA,則A是B的必要條件,?
借助方程、不等式及解析幾何有關(guān)知識求解判斷.?
解:(1)當(dāng)|p|≥2時,例如p=3,則方程x2+3x+6=0無實根,而方程x2+px+p+3=0有實根,必有p≤-2或p≥6,可推出|p|≥2,故A是B的必要不充分條件.?
(2)若圓x2+y2=r2與直線ax+by+c=0相切,圓心到直線ax+by+c=0的距離等于r,即r=,所以c2=(a2+b2)r2;反過來,若c2=(a2+b2)r2,則=r成立,說明x2+y2=r2的圓心(0,0)到直線ax+by+c=0的距離等于r,即圓x2+y2=r2與直線ax+by+c=0相切,故A是B的充分必要條件.
溫馨提示
對于涉及充分必要條件判斷的問題,必須以準確、完整地理解充分、必要條件的概念為基礎(chǔ),有些問題需轉(zhuǎn)化為等價命題后才容易判斷.
科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)1-1蘇教版 蘇教版 題型:044
在下列各題中,判斷A是B的什么條件,并說明理由.
(1)A:|p|≥2,p∈R,B:方程x2+px+p+3=0有實根;
(2)A:圓x2+y2=r2與直線ax+by+c=0相切,B:c2=(a2+b2)r2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)A:|p|≥2,p∈R.B:方程x2+px+p+3=0有實根;
(2)A:圓x2+y2=r2與直線ax+by+c=0相切.B:c2=(a2+b2)r2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)A:|p|≥2,p∈R,B:方程x2+px+p+3=0有實根;?
(2)A:圓x2+y2=r2與直線ax+by+c=0相切,B:c2=(a2+b2)r2.?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)A:|p|≥2,p∈R,B:方程x2+px+p+3=0有實根;
(2)A:圓x2+y2=r2與直線ax+by+c=0相切,B:c2=(a2+b2)r2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com