已知函數(shù);
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)在上的最大值和最小值.
解:(1)f′(x)=-x,k="f’(0)=1," f(0)=0切線y=x
(2)令f′(x)=0,即-x=0,化簡為x2+x-2=0,解得x1=-2(舍去),x2=1.
當0≤x<1時,f′(x)>0,f(x)單調遞增;當1<x≤2時,f′(x)<0,f(x)單調遞減.
所以f(1)=ln2-為函數(shù)f(x)的極大值.
又因為f(0)=0,f(2)=ln3-1>0,f(1)>f(2),
所以f(0)=0為函數(shù)f(x)在[0,2]上的最小值,
f(1)=ln2-為函數(shù)f(x)在[0,2]上的最大值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知,函數(shù)
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;
(3)對(2)中的,若關于的方程有兩個不相等的實數(shù)解,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導函數(shù)是 f ’(x),若f ’( x )是偶函數(shù),則曲線
y=f (x) 在原點處的切線方程為          (     )
A.y=-3xB.y=-2xC.y=3xD.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù),,和直線 .

(1)求的值;
(2)是否存在的值,使直線既是曲線的切線,又是的切線;如果存在,求出k的值;如果不存在,說明理由.
(3)如果對于所有,都有成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在曲線上的點M處的切線傾斜角為45°,則點M坐標是___________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點(0,1)處的切線方程為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知函數(shù)fx)的圖象過點(0,-5),它的導數(shù)=4x3-4x,則當fx)取得最大值-5時,x的值應為                                                                                                (   )
A.-1B.0 C.1D.±1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線y=x3-2x+4在點(1,3)處的切線的傾斜角為  ▲  

查看答案和解析>>

同步練習冊答案