已知函數(shù)f(x)=ln(x+a)+x2,x=-1是f(x)的極值點(diǎn),
(I)求a的值;
(II)并求f(x)的單調(diào)區(qū)間.
分析:(I)先求函數(shù)的導(dǎo)數(shù),再根據(jù)函數(shù)在x=0處取得極值,則此處的導(dǎo)數(shù)值為0,求得a=1,
(II)先求導(dǎo)數(shù),令其為0,解出x,列出f′(x),f(x)的關(guān)系表格,即可得到答案.
解答:解:(I)f(x)=
1
x+a
+2x

因?yàn)閤=-1是f(x)的極值點(diǎn),
所以f(-1)=
1
-1+a
-2=0

所以a=
3
2

(II)由(I)得f(x)=
2
2x+3
+2x(x>-
3
2
)

令f(x)=0,得x=-1或x=-
1
2

x (-
3
2
,-1)
-1 (-1,-
1
2
)
-
1
2
(-
1
2
,+∞)
f(x) + 0 - 0 +
f(x) 極大值 極小值
所以f(x)的單調(diào)增區(qū)間是:(-
3
2
,-1),(-
1
2
,+∞)
;單調(diào)增區(qū)間是:(-1,-
1
2
)
點(diǎn)評(píng):本題主要考查利用求導(dǎo)研究函數(shù)的單調(diào)性,解題的關(guān)鍵是弄清函數(shù)在某點(diǎn)取得極值的條件,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案