7.設(shè)$a={2^{-\frac{1}{3}}},b={log_2}\frac{1}{3},c={log_{\frac{1}{2}}}\frac{1}{3}$,則(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵$a={2^{-\frac{1}{3}}},b={log_2}\frac{1}{3},c={log_{\frac{1}{2}}}\frac{1}{3}$,
∴0<a=${2}^{-\frac{1}{3}}$<20=1,
$b=lo{g}_{2}\frac{1}{3}$<log21=0,
c=$lo{g}_{\frac{1}{2}}\frac{1}{3}$>$lo{g}_{\frac{1}{2}}\frac{1}{2}=1$,
∴b<a<c.
故選:C.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正三棱柱ABC-A1B1C1的底面邊長為2cm,高為4cm,則一質(zhì)點自點A出發(fā),沿著三棱柱的側(cè)面,繞行兩周到達點A1的最短路線的長為(  )
A.4$\sqrt{10}$cmB.12$\sqrt{3}$cmC.2$\sqrt{13}$cmD.13cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,BC=2,AC-AB=1,△ABC的面積為$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{13}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=x2-4x
(1)求f(-2)的值;
(2)當(dāng)x<0時,求f(x)的解析式;
(3)設(shè)函數(shù)f(x)在[t-1,t+1](t>1)上的最大值為g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=ax-1+4(其中a>0且a≠1)的圖象恒過定點P,則P點坐標(biāo)是(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.不使用計算器,計算下列各題:
(1)${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$;
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{({-9.8})^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當(dāng)m=-1時,求A∪B;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若兩個集合{1,a},{a2}滿足{1,a}∪{a2}={1,a}則實數(shù)a=-1或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC中的內(nèi)角A,B,C的對邊分別為a,b,c,若$\sqrt{5}$b=4c,B=2C
(Ⅰ)求cosB;
(Ⅱ)若c=5,點D為邊BC上一點,且BD=6,求△ADC的面積.

查看答案和解析>>

同步練習(xí)冊答案